You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Since the early 20th century, X-ray and electron scattering has provided a powerful means by which the location of atoms can be identified in gas-phase molecules and condensed matter with sub-atomic spatial resolution. Scattering techniques can also provide valuable observables of the fundamental properties of electrons in matter such as an electron’s spin and its energy. In recent years, significant technological developments in both X-ray and electron scattering have paved the way to time-resolved analogues capable of capturing real-time snapshots of transient structures undergoing a photochemical reaction. Structural Dynamics with X-ray and Electron Scattering is a two-part book that firstly introduces the fundamental background to scattering theory and photochemical phenomena of interest. The second part discusses the latest advances and research results from the application of ultrafast scattering techniques to imaging the structure and dynamics of gas-phase molecules and condensed matter. This book aims to provide a unifying platform for X-ray and electron scattering.
This book is a collection of reviews and essays about the recent wide-ranging developments in the areas of quantum physics. The articles have mostly been written at the graduate level, but some are accessible to advanced undergraduates. They will serve as good introductions for beginning graduate students in quantum physics who are looking for directions. Aspects of mathematical physics, quantum field theories and statistical physics are emphasized.
This book documents the recent vivid developments in the research field of ultrashort intense light pulses for probing and controlling ultrafast dynamics. The recent fascinating results in studying and controlling ultrafast dynamics in ever more complicated systems such as (bio-)molecules and structures of meso- to macroscopic sizes on ever shorter time-scales are presented. The book is written by some of the most eminent experimental and theoretical experts in the field. It covers the new groundbreaking research directions that were opened by the availability of new light sources such as fully controlled intense laser fields with durations down to a single oscillation cycle, short-wavelengt...
The book is designed to serve as a textbook for advanced undergraduate and graduate students enrolled in physics and electronics and communication engineering and mathematics. The book provides an introduction to Fourier optics in light of new developments in the area of computational imaging over the last couple of decades. There is an in-depth discussion of mathematical methods such as Fourier analysis, linear systems theory, random processes, and optimization-based image reconstruction techniques. These techniques are very much essential for a better understanding of the working of computational imaging systems. It discusses topics in Fourier optics, e.g., diffraction phenomena, coherent ...
This open access book covers recent advances in experiments using the ultra-cold, very weakly perturbing superfluid environment provided by helium nanodroplets for high resolution spectroscopic, structural and dynamic studies of molecules and synthetic clusters. The recent infra-red, UV-Vis studies of radicals, molecules, clusters, ions and biomolecules, as well as laser dynamical and laser orientational studies, are reviewed. The Coulomb explosion studies of the uniquely quantum structures of small helium clusters, X-ray imaging of large droplets and electron diffraction of embedded molecules are also described. Particular emphasis is given to the synthesis and detection of new species by mass spectrometry and deposition electron microscopy.
The research and its outcomes presented here is devoted to the use of x-ray scattering to study correlated electron systems and magnetism. Different x-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with x-ray diffraction is shown.
This open access book collects the contributions of the seventh school on Magnetism and Synchrotron Radiation held in Mittelwihr, France, from 7 to 12 October 2018. It starts with an introduction to the physics of modern X-ray sources followed by a general overview of magnetism. Next, light / matter interaction in the X-ray range is covered with emphasis on different types of angular dependence of X-ray absorption spectroscopy and scattering. In the end, two domains where synchrotron radiation-based techniques led to new insights in condensed matter physics, namely spintronics and superconductivity, are discussed. The book is intended for advanced students and researchers to get acquaintance with the basic knowledge of X-ray light sources and to step into synchrotron-based techniques for magnetic studies in condensed matter physics or chemistry.
Intended for researchers and students in physics, chemistry and materials science, this book provides the necessary background information and sufficient mathematical and physical detail to study the current research literature. The book begins with a survey of liquid crystal phases and field effects, together with an introduction to the basic physics of nuclear magnetic resonance. It then discusses orientational ordering and molecular field theories for various liquid crystal molecules and nmr studies of uniaxial and biaxial phases. Subsequent chapters consider spin relaxation processes and rotational, translational, and internal molecular dynamics of liquid crystals. The final chapter discusses two-dimensional and multiple- quantum nmr spectroscopies and their application in elucidating liquid crystal properties. This second edition, updated throughout, incorporates many new references and includes new mathematical appendices.
The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sourc...
Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Sixth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.