You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the AMS Special Session on Harmonic Analysis, in honor of Gestur Ólafsson's 65th birthday, held on January 4, 2017, in Atlanta, Georgia. The articles in this volume provide fresh perspectives on many different directions within harmonic analysis, highlighting the connections between harmonic analysis and the areas of integral geometry, complex analysis, operator algebras, Lie algebras, special functions, and differential operators. The breadth of contributions highlights the diversity of current research in harmonic analysis and shows that it continues to be a vibrant and fruitful field of inquiry.
Provides an historical overview of several decades in integral geometry and geometric analysis as well as recent advances in these fields and closely related areas. It contains several articles focusing on the mathematical work of Sigurdur Helgason, including an overview of his research by Gestur Olafsson and Robert Stanton.
This volume contains the proceedings of the AMS Special Session on New Developments in the Analysis of Nonlocal Operators, held from October 28–30, 2016, at the University of St. Thomas, Minneapolis, Minnesota. Over the last decade there has been a resurgence of interest in problems involving nonlocal operators, motivated by applications in many areas such as analysis, geometry, and stochastic processes. Problems represented in this volume include uniqueness for weak solutions to abstract parabolic equations with fractional time derivatives, the behavior of the one-phase Bernoulli-type free boundary near a fixed boundary and its relation to a Signorini-type problem, connections between fractional powers of the spherical Laplacian and zeta functions from the analytic number theory and differential geometry, and obstacle problems for a class of not stable-like nonlocal operators for asset price models widely used in mathematical finance. The volume also features a comprehensive introduction to various aspects of the fractional Laplacian, with many historical remarks and an extensive list of references, suitable for beginners and more seasoned researchers alike.
This volume contains the proceedings of the AMS Special Session on Unimodularity in Randomly Generated Graphs, held from October 8–9, 2016, in Denver, Colorado. Unimodularity, a term initially used in locally compact topological groups, is one of the main examples in which the generalization from groups to graphs is successful. The “randomly generated graphs”, which include percolation graphs, random Erdős–Rényi graphs, and graphings of equivalence relations, are much easier to describe if they result as random objects in the context of unimodularity, with respect to either a vertex-transient “host”-graph or a probability measure. This volume tries to give an impression of the various fields in which the notion currently finds strong development and application: percolation theory, point processes, ergodic theory, and dynamical systems.
This volume contains the proceedings of the conference Automorphic Forms and Related Geometry: Assessing the Legacy of I.I. Piatetski-Shapiro, held from April 23-27, 2012, at Yale University, New Haven, CT. Ilya I. Piatetski-Shapiro, who passed away on 21 February 2009, was a leading figure in the theory of automorphic forms. The conference attempted both to summarize and consolidate the progress that was made during Piatetski-Shapiro's lifetime by him and a substantial group of his co-workers, and to promote future work by identifying fruitful directions of further investigation. It was organized around several themes that reflected Piatetski-Shapiro's main foci of work and that have promis...
This volume contains the proceedings of the AMS Special Session on Harmonic Analysis and Its Applications held March 29-30, 2014, at the University of Maryland, Baltimore County, Baltimore, MD. It provides an in depth look at the many directions taken by experts in Harmonic Analysis and related areas. The papers cover topics such as frame theory, Gabor analysis, interpolation and Besov spaces on compact manifolds, Cuntz-Krieger algebras, reproducing kernel spaces, solenoids, hypergeometric shift operators and analysis on infinite dimensional groups. Expositions are by leading researchers in the field, both young and established. The papers consist of new results or new approaches to solutions, and at the same time provide an introduction into the respective subjects.
The Norbert Wiener Center for Harmonic Analysis and Applications provides a state-of-the-art research venue for the broad emerging area of mathematical engineering in the context of harmonic analysis. This two-volume set consists of contributions from speakers at the February Fourier Talks (FFT) from 2006-2011. The FFT are organized by the Norbert Wiener Center in the Department of Mathematics at the University of Maryland, College Park. These volumes span a large spectrum of harmonic analysis and its applications. They are divided into the following parts: Volume I · Sampling Theory · Remote Sensing · Mathematics of Data Processing · Applications of Data Processing Volume II · Measure Theory · Filtering · Operator Theory · Biomathematics Each part provides state-of-the-art results, with contributions from an impressive array of mathematicians, engineers, and scientists in academia, industry, and government. Excursions in Harmonic Analysis: The February Fourier Talks at the Norbert Wiener Center is an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.
This volume contains the proceedings of the Maurice Auslander Distinguished Lectures and International Conference, held April 25-30, 2012, in Falmouth, MA. The representation theory of finite dimensional algebras and related topics, especially cluster combinatorics, is a very active topic of research. This volume contains papers covering both the history and the latest developments in this topic. In particular, Otto Kerner gives a review of basic theorems and latest results about wild hereditary algebras, Yuri Berest develops the theory of derived representation schemes, and Markus Schmidmeier presents new applications of arc diagrams.
This volume contains the proceedings of the Stanford Symposium on Algebraic Topology: Applications and New Directions, held from July 23-27, 2012, at Stanford University, Stanford, California. The symposium was held in honor of Gunnar Carlsson, Ralph Cohen and Ib Madsen, who celebrated their 60th and 70th birthdays that year. It showcased current research in Algebraic Topology reflecting the celebrants' broad interests and profound influence on the subject. The topics varied broadly from stable equivariant homotopy theory to persistent homology and application in data analysis, covering topological aspects of quantum physics such as string topology and geometric quantization, examining homology stability in algebraic and geometric contexts, including algebraic -theory and the theory of operads.