You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewat...
For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewat...
In 1982 the International Association on Water Pollution Research and Control (IAWPRC), as it was then called, established a Task Group on Mathematical Modelling for Design and Operation of Activated Sludge Processes. The aim of the Task Group was to create a common platform that could be used for the future development of models for COD and N removal with a minimum of complexity. As the collaborative result of the work of several modelling groups, the Activated Sludge Model No. 1 (ASM1) was published in 1987, exactly 25 years ago. The ASM1 can be considered as the reference model, since this model triggered the general acceptance of wastewater treatment modelling, first in the research comm...
Aerobic Granular Sludge has recently received growing attention by researchers and technology developers, worldwide. Laboratory studies and preliminary field tests led to the conclusion that granular activated sludge can be readily established and profitably used in activated sludge plants, provided 'correct' process conditions are chosen. But what makes process conditions 'correct'? And what makes granules different from activated sludge flocs? Answers to these question are offered in Aerobic Granular Sludge. Major topics covered in this book include: Reasons and mechanism of aerobic granule formation Structure of the microbial population of aerobic granules Role, composition and physical properties of EPS Diffuse limitation and microbial activity within granules Physio-chemical characteristics Operation and application of granule reactors Scale-up aspects of granular sludge reactors, and case studies Aerobic Granular Sludge provides up-to-date information about a rapidly emerging new technology of biological treatment.
The first edition of this book was published in 2008 and it went on to become IWA Publishing’s bestseller. Clearly there was a need for it because over the twenty years prior to 2008, the knowledge and understanding of wastewater treatment had advanced extensively and moved away from empirically-based approaches to a fundamental first-principles approach based on chemistry, microbiology, physical and bioprocess engineering, mathematics and modelling. However the quantity, complexity and diversity of these new developments was overwhelming for young water professionals, particularly in developing countries without readily available access to advanced-level tertiary education courses in wast...
Wastewater and drinking water treatment are essential elements of urban infrastructure. In the course of the last century there has been enormous technical development, so successful that for the general public in industrialized countries this infrastructure is hardly noticed. Nevertheless there is ongoing activity to further improve the existing processes. The IWA Leading Edge Technology conference held in Prague helped to stimulate this development and this book helps disseminate the results. A selection of presentations from the conference are included in this volume. Wastewater and drinking-water treatment are normally considered as two separate fields due to the very different boundary conditions that apply. Nevertheless several issues such as membrane processes, removal of micropollutants and water reuse are of crucial importance to both. This potential for cross-fertilization further enhances the value of this collection of high-quality articles that delineate the leading edge of research and development in water and wastewater treatment.
Over the past twenty years, the knowledge and understanding of wastewater treatment has advanced extensively and moved away from empirically based approaches to a fundamentally-based first principles approach embracing chemistry, microbiology, and physical and bioprocess engineering, often involving experimental laboratory work and techniques. Many of these experimental methods and techniques have matured to the degree that they have been accepted as reliable tools in wastewater treatment research and practice. For sector professionals, especially a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these n...
The study of biofilm considers the close association of micro-organisms with each other at interfaces and is relevant to a variety of disciplines, including medicine, dentistry, bioremediation, biofouling, water technology, engineering and food science. Although the habitats studied differ widely, some common elements exist such as method of attachment, coadhesion and regulation of biofilm phenotype and architecture. This book aims to distil the common principles of biofilm physiology and growth for all interested disciplines.
Because of the uneven distribution of fresh water in time and space and the increasing human population, a large number of regions are experiencing water scarcity and stress. Membrane-based desalination technologies like reverse osmosis have the potential to solve the fresh water crisis in coastal areas. However, in many cases membrane performance is restricted by biofouling. Biofouling of Membrane Systems gives a comprehensive overview on the state of the art strategies to control biofouling in spiral wound reverse osmosis membrane systems and point to possible future research directions. Despite the fact that much research and development has been done to overcome biofouling in spiral woun...
The first edition of this book was published in 2008 and it went on to become IWA Publishing's bestseller. Clearly there was a need for it because over the twenty years prior to 2008, the knowledge and understanding of wastewater treatment had advanced extensively and moved away from empirically-based approaches to a fundamental first-principles approach based on chemistry, microbiology, physical and bioprocess engineering, mathematics and modelling. However the quantity, complexity and diversity of these new developments was overwhelming for young water professionals, particularly in developing countries without readily available access to advanced-level tertiary education courses in wastew...