You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this collection, the author has compiled a set of his papers representing some of the highlights of materials chemistry. It features a section on oxidic materials, which includes high-temperature superconductivity, colossal magnetoresistance, electronic phase separation and multiferroics. The author has also included novel methods for making gallium nitride, boron nitride and such materials, by using precursors and the urea decomposition route. Moreover, there is a section dealing with open-framework and hybrid materials of which the latter has a great future since one can make use of the rigidity of inorganic structures and the functionality and flexibility of the organic residues to design materials with novel properties.
With this handbook the distinguished team of editors has combined the expertise of leading nanomaterials scientists to provide the latest overview of this field. The authors cover the whole spectrum of nanomaterials, ranging from theory, synthesis, properties, characterization to application, including such new developments as: · quantum dots, nanoparticles, nanoporous materials, as well as nanowires, nanotubes and nanostructural polymers · nanocatalysis, nanolithography, nanomanipulation · methods for the synthesis of nanoparticles. The book can thus be recommended for everybody working in nanoscience: Beginners can acquaint themselves with the exciting subject, while specialists will find answers to all their questions plus helpful suggestions for further research.
In this collection, the author has compiled a set of his papers representing some of the highlights of materials chemistry. It features a section on oxidic materials, which includes high-temperature superconductivity, colossal magnetoresistance, electronic phase separation and multiferroics. The author has also included novel methods for making gallium nitride, boron nitride and such materials, by using precursors and the urea decomposition route. Moreover, there is a section dealing with open-framework and hybrid materials of which the latter has a great future since one can make use of the rigidity of inorganic structures and the functionality and flexibility of the organic residues to design materials with novel properties.
Development of superior crops that have consistent performance in quality and in quantity has not received the same emphasis in the field of genetics and breeding as merited. Specialty trait requires special focus to propagate. Yet basic germplasm and breeding methodologies optimized to improve crops are often applied in the development of improved specialty types. However, because of the standards required for specialty traits, methods of development and improvement are usually more complex than those for common commodity crops. The same standards of performance are desired, but the genetics of the specialty traits often impose breeding criteria distinct from those of non-specialty possessi...
This book describes the synthesis, characterization and applications of inorganic and metallic nanotubular materials. It covers a wide variety of nanotubular materials excluding carbon nanotubes, and explains their potential for future technologies.
Carbon filament, vapor grown carbon fibers and carbon nanotubes have been discovered to have remarkable properties, opening they way for their use in intriguing and novel applications in electronics, chemistry and materials science. There are many similarities between nanotubes and filaments, leading many researchers to critically compare the two materials, their production, and potential applications. The two materials are compared and contrasted in depth in the present book, which is a comprehensive review of current research activity, growth mechanisms, physical properties, industrial production, and applications. The structures are discussed using a unified approach, which helps to compare growth mechanisms, contrasting morphological differences, and detailing how novel properties depend on such differences.
With this handbook, the distinguished team of editors has combined the expertise of leading nanomaterials scientists to provide the latest overview of this field. They cover the whole spectrum of nanomaterials, ranging from theory, synthesis, properties, characterization to application, including such new developments as quantum dots, nanoparticles, nanoporous materials, nanowires, nanotubes, and nanostructured polymers. The result is recommended reading for everybody working in nanoscience: Newcomers to the field can acquaint themselves with this exciting subject, while specialists will find answers to all their questions as well as helpful suggestions for further research.
This invaluable book comprises assorted recent papers of Professor C N R Rao, a well-known chemist. It presents current trends in materials chemistry and physics, offering in-depth information to young researchers and pleasant reading to experts. Advances in Chemistry brings out the single-minded dedication of Professor Rao to the promotion of science.
Graphene, a single sheet of graphite, has an unconventional electronic structure that can be described in terms of massless Dirac Fermions. This interesting electronic feature is not only an important fundamental issue in condensed matter physics but also holds future promise in post-Si electronic/spintronics device applications.Graphene is the most fundamental building block, with which a variety of carbon-based materials such as graphite, fullerene and carbon nanotubes can be created. The diverse chemical, electronic and magnetic properties of nanographene and graphene are mainly due to their geometrical electronic structure. This book presents the frontiers of graphene research ranging from important issues in condensed matter physics and chemistry to advanced device applications.