You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book, intended for people in engineering and fundamental sciences, presents an integrated mathematical methodology for advanced dynamics and control of structures and machines, ranging from the derivation of models up to the control synthesis problem. This point of view is particularly useful as the physical insight and the associated structural properties, related e.g. to the Lagrangian or Hamiltonian framework, can be advantageously utilized. To this end, up to date results in disciplines like continuum mechanics, analytical mechanics, thermodynamics and electrodynamics are presented exploiting the differential geometric properties, with the basic notions of this coordinate-free approach revisited in an own chapter. In order to illustrate the proposed methodologies, several industrial applications, e.g., the derivation of exact solutions for the deformation compensation by shaped actuation in elastic bodies, or the coordination of rigid and flexible joint robots, are discussed.
This volume provides a general picture of the current trends in the area of automatic control, with particular emphasis on practical problems in the mechanical field. For this reason, besides theoretical contributions, it presents selected lectures on recent developments interesting from an industrial point of view, such as automotive, robotics, motion control, and electrical drives./a
The objective of the EU Nonlinear Control Network Workshop was to bring together scientists who are already active in nonlinear control and young researchers working in this field. This book presents selectively invited contributions from the workshop, some describing state-of-the-art subjects that already have a status of maturity while others propose promising future directions in nonlinear control. Amongst others, following topics of nonlinear and adaptive control are included: adaptive and robust control, applications in physical systems, distributed parameter systems, disturbance attenuation, dynamic feedback, optimal control, sliding mode control, and tracking and motion planning.
This treatment of modern topics related to mathematical systems theory forms the proceedings of a workshop, Mathematical Systems Theory: From Behaviors to Nonlinear Control, held at the University of Groningen in July 2015. The workshop celebrated the work of Professors Arjan van der Schaft and Harry Trentelman, honouring their 60th Birthdays. The first volume of this two-volume work covers a variety of topics related to nonlinear and hybrid control systems. After giving a detailed account of the state of the art in the related topic, each chapter presents new results and discusses new directions. As such, this volume provides a broad picture of the theory of nonlinear and hybrid control systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on exciting new approaches to control and system theory and their predictions of future directions for the subject that were discussed at the workshop.
This volume deals with controllability and observability properties of nonlinear systems, as well as various ways to obtain input-output representations. The emphasis is on fundamental notions as (controlled) invariant distributions and submanifolds, together with algorithms to compute the required feedbacks.
With respect to the first edition as Volume 218 in the Lecture Notes in Con trol and Information Sciences series the basic idea of the second edition has remained the same: to provide a compact presentation of some basic ideas in the classical theory of input-output and closed-loop stability, together with a choice of contributions to the recent theory of nonlinear robust and 1foo control and passivity-based control. Nevertheless, some parts of the book have been thoroughly revised and/or expanded, in order to have a more balanced presen tation of the theory and to include some of the new developments which have been taken place since the appearance of the first edition. I soon realized, how...
This volume is based on the course notes of the 2nd NCN Pedagogical School, the second in the series of Pedagogical Schools in the frame work of the European TMR project, "Breakthrough in the control of nonlinear systems (Nonlinear Control Network)". The school consists of four courses that have been chosen to give a broad range of techniques for the analysis and synthesis of nonlinear control systems, and have been developed by leading experts in the field. The topics covered are: Differential Algebraic Methods in Nonlinear Systems; Nonlinear QFT; Hybrid Systems; Physics in Control. The book has a pedagogical character, and is specially directed to postgraduates in most areas of engineering and applied sciences like mathematics and physics. It will also be of interest to researchers and practitioners needing a solid introduction to the above topics.
This treatment of modern topics related to mathematical systems theory forms the proceedings of a workshop, Mathematical Systems Theory: From Behaviors to Nonlinear Control, held at the University of Groningen in July 2015. The workshop celebrated the work of Professors Arjan van der Schaft and Harry Trentelman, honouring their 60th Birthdays. The second volume of this two-volume work covers a variety of topics related to behavioral systems and robust control. After giving a detailed account of the state-of the art in the related topic, each chapter presents new results and discusses new directions. As such, this volume provides a broad picture of the theory of behavioral systems and robust control for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on exciting new approaches to control and system theory and their predictions of future directions for the subject that were discussed at the workshop.
The study of complex, interconnected mechanical systems with rigid and flexible articulated components is of growing interest to both engineers and mathematicians. Recent work in this area reveals a rich geometry underlying the mathematical models used in this context. In particular, Lie groups of symmetries, reduction, and Poisson structures play a significant role in explicating the qualitative properties of multibody systems. In engineering applications, it is important to exploit the special structures of mechanical systems. For example, certain mechanical problems involving control of interconnected rigid bodies can be formulated as Lie-Poisson systems. The dynamics and control of robot...
Advanced Topics in Control Systems Theory contains selected contributions written by lecturers at the second (annual) Formation d’Automatique de Paris (FAP) (Graduate Control School in Paris). It is addressed to graduate students and researchers in control theory with topics touching on a variety of areas of interest to the control community such as cascaded systems, flatness, optimal control, and Hamiltonian and infinite-dimensional systems. The reader is provided with a well-integrated synthesis of the latest thinking in these subjects without the need for an exhaustive literature review. The internationally known contributors to this volume represent many of the most reputable control centers in Europe. Advanced Topics in Control Systems Theory can be used to support either a one-term general advanced course on nonlinear control theory, devoting a few lectures to each chapter, or for more focused and intensive courses at graduate level. The book’s concise but pedagogical manner will give an ideal start to researchers wishing to broaden their knowledge in aspects of modern control theory outside their own expertise.