You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.
Metamaterials and plasmonics are cross-disciplinary fields that are emerging into the mainstream of many scientific areas. Examples of scientific and technical fields which are concerned are electrical engineering, micro- and nanotechnology, microwave engineering, optics, optoelectronics, and semiconductor technologies. In plasmonics, the interplay between propagating electromagnetic waves and free-electron oscillations in materials are exploited to create new components and applications. On the other hand, metamaterials refer to artificial composites in which small artificial elements, through their collective interaction, creates a desired and unexpected macroscopic response function that ...
Properties of wave localization play a decisive role both in applications of engineered microstructures and in the detection of cracks and flaws. The papers in this volume give an introduction into a variety of interrelated dynamic localization phenomena occurring in elasticity, acoustics and electromagnetism. In particular, these involve surface and edge waves and also trapped modes localized near defects, shape changes and the edges of elongated waveguides. The effects of layering, prestress, anisotropy, periodic microstructures as well as various multi-field phenomena are addressed with reference to underlying industrial problems. The essential and up-to-date numerical, asymptotic, and analytical techniques are covered as well as relevant continuum theories that are required to make progress in, and understand wave localization and allied effects. A major focus is on a qualitative physical insight into the mechanisms of dynamic localization.
After 1855 the society's annual reports were included in its Proceedings.
None
After 1855 the society's annual reports were included in its Proceedings.
This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams. Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in this field.