You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This comprehensive, self-contained work brings to the reader what is known to date about grinding and how that knowledge can be translated into exceptional precision in part manufacturing. Structured to educate as well as serve as a shop-floor reference, the book bridges the gap between theory and application, presenting a critical and unified picture of the grinding process and how its use brings part quality in harmony with customer expectations.
The magic tree house whisks Jack and Annie away to Australia where they must save some animals from a wildfire.
Abrasive machining is one of the most important processes used in manufacturing engineering to remove unwanted material and to obtain the desired geometry and surface quality. Abrasive machining processes are processes where material is removed from a work piece using a multitude of hard angular abrasive particles or grains which may or may not be bonded to form a tool. Abrasive Machining discusses the fundamentals and advances in the abrasive machining processes, and provides a complete overview of the newly developing areas in the field including but not limited to, high efficiency deep grinding and micro and nanogrinding.
The subject matter of this book is the information on the abrasive technology methods, the characteristics of the methods (for example, the technological parameters, tools, and machines), innovative methods, characteristics of surface structure and surface properties after this type of mechanical process, and application in various industrial branches and other technical and technological domains. Abrasive technology is very important, for example, in precision component manufacturing and nano-technology devices. The aim of this book is to present information on the characteristics and applications of abrasive technology, abrasive tools, tests, and also the innovative methods of this technology. This information enables scientists, engineers, and designers to ensure the soundness and integrity of the fabricated components and to develop new techniques effectively.
Recent and radically improved machining processes, from high wheel speeds to nanotechnology, have turned a spotlight on abrasive machining processes as a fertile area for further advancements. Written for researchers, students, engineers and technicians in manufacturing, this book presents a fundamental rethinking of important tribological elements of abrasive machining processes and their effects on process efficiency and product quality. Newer processes such as chemical mechanical polishing (CMP) and silicon wafer dicing can be better understood as tribological processes. Understanding the tribological principles of abrasive processes is crucial to discovering improvements in accuracy, production rate, and surface quality of products spanning all industries, from machine parts to ball bearings to contact lens to semiconductors.
This monograph focuses on abrasive tools for grinding, polishing, honing, and lapping operations. The book describes the life cycle of abrasive tools from raw material processing of abrasive grits and bonding, manufacturing of monolithic or multi-layered tools, tool use to tool end-of-life. Moreover, this work highlights sustainability challenges including economic, environmental, social and technological aspects. The target audience primarily comprises research and industry experts in the field of manufacturing, but the book may also be beneficial for graduate students.
None