You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
The NATO Advanced Study Institute "Cosmological Aspects of X-Ray Clus ters of Galaxies" took place in Vel en , Westphalia, Germany, from June 6 to June 18, 1993. It addressed the fruitful union of two topics, cosmology and X-ray clus ters, both of which carry substantial scientific weight at the beginning of the last decenium of the last century in the second millenium of our era. The so far largest X-ray "All-Sky Survey", observed by the ROSAT X-ray satel lite, and ROSAT's deep pointed observations, have considerably enlarged the base of X-ray astronomy, particularly concerning extragalactic sources. Cosmology has gained significant impetus from the large optical direct and spectroscopic su...
The visible universe is a small perturbation on the material universe. Zwicky and Sinclair Smith in the 1930s gave evidence of invisible mass in the Coma and Virgo Clusters of Galaxies. Better optical data has only served to confound their critics and the X-ray data confirms that the gravitational potentials are many times larger than those predicted on the basis of the observed stars. Dynamical analyses of individual galaxies have found that significant extra mass is needed to explain their rotational velocities. On much larger scales, tens of megaparsecs, there is suggestive evidence that there is even more mass per unit luminosity. What is this non-luminous stuff of which the universe is made'? How much of it is there? Need there be only one kind of stuff? There are three basic possi bili ties:- all of it is ordinary (baryonic) matter, all of it is some other kind of (non-baryonic) matter, or some of it is baryonic and some is non-baryonic.
This textbook introduces the current astrophysical observations of black holes, and discusses the leading techniques to study the strong gravity region around these objects with electromagnetic radiation. More importantly, it provides the basic tools for writing an astrophysical code and testing the Kerr paradigm. Astrophysical black holes are an ideal laboratory for testing strong gravity. According to general relativity, the spacetime geometry around these objects should be well described by the Kerr solution. The electromagnetic radiation emitted by the gas in the inner part of the accretion disk can probe the metric of the strong gravity region and test the Kerr black hole hypothesis. With exercises and examples in each chapter, as well as calculations and analytical details in the appendix, the book is especially useful to the beginners or graduate students who are familiar with general relativity while they do not have any background in astronomy or astrophysics.“/p>
This book gives an account of the proceedings of the International Astronomical Union Colloquium 115: High Resolution X-Ray Spectroscopy of Cosmic Plasmas. This was the first IAU meeting dedicated to high resolution X-ray spectroscopy of objects outside the solar system. A broad range of objects and astrophysical conditions are discussed. Results from the first generation of satellites with spectroscopic capability, i.e. the Einstein Observatory, EXOSAT, and Tenma, are reviewed from a perspective of a more precise interpretation allowed by improved theoretical models and plasma diagnostics. Laboratory and solar X-ray results that model or are relevant to conditions found in cosmic X-ray sources are also presented. The colloquium presents a forum for discussion of scientific objectives of new international missions in high resolution X-ray spectroscopy.
Black holes, once considered to be of purely theoretical interest, play an important role in observational astronomy and a range of astrophysical phenomena. This volume is based on a meeting held at the Space Telescope Science Institute, which explored the many aspects of black hole astrophysics. Written by world experts in areas of stellar-mass, intermediate-mass and supermassive black holes, these review papers provide an up-to-date overview of developments in this field. Topics discussed range from black hole entropy and the fate of information to supermassive black holes at the centers of galaxies, and from the possibility of producing black holes in collider experiments to the measurements of black hole spins. This is an invaluable resource for researchers currently working in the field, and for graduate students interested in this active and growing area of research.
NASA's Chandra X-ray Observatory and ESA's XMM-Newton Observatory have been the pioneering satellites for studying the Universe with X-rays and the cornerstone of X-ray spectroscopy since their launches more than 20 years ago. The onboard gratings provide us a unique opportunity to distinguish individual spectral lines from different atoms thanks to their high energy resolutions. Enormous discoveries have been achieved by these two missions when observing a variety of X-ray-emitting astronomical objects, such as black holes, supernova remnants, clusters of galaxies, and stars. However, the data are limited to fairly bright X-ray sources. The recent JAXA's mission Hitomi opened a new window o...
Provides a comprehensive summary on the physical models and current theory of black hole accretion, growth and mergers, in both the supermassive and stellar-mass cases. This title reviews in-depth research on accretion on all scales, from galactic binaries to intermediate mass and supermassive black holes. Possible future directions of accretion are also discussed. The following main themes are covered: a historical perspective; physical models of accretion onto black holes of all masses; black hole fundamental parameters; and accretion, jets and outflows. An overview and outlook on the topic is also presented. This volume summarizes the status of the study of astrophysical black hole research and is aimed at astrophysicists and graduate students working in this field. Originally published in Space Science Reviews, Vol 183/1-4, 2014.
The year 2005, which marked the 100th anniversary of the 'annus mirabilis', the year in which Albert Einstein published three of his most important scientific papers, was the perfect opportunity to review and to present the current scientific understanding of relativistic topics. This book provides an up-to-date reference on the theory of gravity, relativistic astrophysics and cosmology. It is a useful reference tool for both the expert and the new-comer in these fields.