You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Market: Physicists, especially beam physicists and elementary particle physicists, as well as science historians and students. In the 1950s and 60s a revolution took place in our ability to handle and manipulate particle beams. This revolution cleared a path for major advances and changed forever the way matter is explored at the subnuclear level. This volume gathers together for the first time the seminal papers on the development and expansion of collider physics. Included are groundbreaking writings from Gersh Budker, Donald Kerst, Bruno Touschek, Nobel laureate Simon van der Meer, Gerry O'Neill, Ernest Courant, Keith Symon, and others. The editors, Claudio Pellegrini and Andrew Sessler, were colleagues of many of these notable contributors and witnesses to the development of virtually every machine mentioned in the book.
This book contains the proceedings of the 1999 ICFA workshop on the physics of high brightness beams. The workshop took a snapshot in time of a fast moving, interdisciplinary field driven by advanced applications such as high gradient, high energy physics linear colliders, high gain free electron lasers, heavy ion fusion, and transmutation of nuclear materials. While the field of high brightness beam physics has traditionally been divided into disparate electron and heavy ion communities, the workshop brought the two types of researchers together, so that a sharing of insights and methods could be achieved. Thus, this book represents a unifying step in the development of the diverse fascinating discipline of high brightness beam physics, with its challenges rooted in collective, nonlinear particle motion and ultra-high electromagnetic energy density.
During the last decades frontieres in various branches of physics have been investigated, especially for describing coherent effects, with very similar methodologies. In particular, the quantum-like formalism has recently received a great deal of attention for describing a number of 'classical topics', such as charged particle beam optics and dynamics in accelerating machines, plasma physics, nonlinear optics, transmission lines, solid state physics. On the other hand, proper quantum models that have been applied to coherent correlated states, squeezed states, macroscopic quantum coherence in superconductivity, superradiance in condensed matter, stochastic mechanics, have also been recently developed in way fully similar to the one used for quantum-like models. The quantum-like approach seems, therefore, to form a common basis for understanding the observations in many diverse field of science.This volume collects very significant examples of these common methodologies that have been given by various quantum-like approaches for describing numerious physical scenarios in the above branches of physics.
This book provides an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. This is the first modern and comprehensive textbook in the field. It begins by gathering the basic tools, recalling the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. It includes coverage of advanced topics of coupled beam dynamics. There is an exhaustive treatment of radiation from accelerated charges. Appendices gather useful mathematical and physical formulae, parameters and units, and solutions to the many end-of-chapter problems are given.
This Seminar has been organized in Erice, in the frame of the Eloisatron project activities, with the special purpose of bringing together an interdisciplinary group of distinguished physicists with prominent interest in the development of the accelerators. Listening to the invited lectures, examining the new topics and reviewing ideas for the acceleration of particles to energies beyond those attainable in machines whose construction is under way or is now contemplated are all important moments of this Seminar that will offer to the Italian Physicists a very important opening over the scenario of the accelerators. In connection with the Eloisatron project developments future Workshop-Semina...
This volume continues the discussion of particle accelerator physics beyond the introduction found in volume I. Basic principles of beam dynamics already discussed in the first volume are expanded here into the nonlinear regime so as to tackle fundamental problems encountered in present day accelerator design and development. Nonlinear dynamics is discussed both in terms of the transverse phase space, to determine chromatic and geometric aberrations which limit the dynamic aperture, as well as the longitude phase space in connection with phase focusing at very small values of the momentum compaction. Whenever possible, effects derived theoretically are compared with observations made with existing accelerators.
This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam p...
The archaeological investigation and the architectural survey conducted at Villa Arianna at Stabiae between 2010 and 2019 form the core of this book. The author's motivation to start on a large-scale study began with the wall constructions, paintings, and mosaics that have gradually been uncovered over the years. His book offers an in-depth comprehension of the history, the decorations, and the construction dynamics of the building from its foundation as country villa to the eruption of Mount Vesuvius in 79 CE. For the first time it provides a synthesis of the archaeological evidence, the ancient texts and the journals of the Bourbon age excavations. The first part of the book is divided int...
This book presents the developments in accelerator physics and technology implemented at the Tevatron proton-antiproton collider, the world’s most powerful accelerator for almost twenty years prior to the completion of the Large Hadron Collider. The book covers the history of collider operation and upgrades, novel arrangements of beam optics and methods of orbit control, antiproton production and cooling, beam instabilities and feedback systems, halo collimation, and advanced beam instrumentation. The topics discussed show the complexity and breadth of the issues associated with modern hadron accelerators, while providing a systematic approach needed in the design and construction of next generation colliders. This book is a valuable resource for researchers in high energy physics and can serve as an introduction for students studying the beam physics of colliders.