You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Here is a rigorous introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications. Discussion includes the dynamic programming method and the maximum principle method, and their relationship. The text emphasises real-world applications, primarily in finance. Results are illustrated by examples, with end-of-chapter exercises including complete solutions. The 2nd edition adds a chapter on optimal control of stochastic partial differential equations driven by Lévy processes, and a new section on optimal stopping with delayed information. Basic knowledge of stochastic analysis, measure theory and partial differential equations is assumed.
This volume contains more than sixty invited papers of international wellknown scientists in the fields where Alain Bensoussan's contributions have been particularly important: filtering and control of stochastic systems, variationnal problems, applications to economy and finance, numerical analysis... In particular, the extended texts of the lectures of Professors Jens Frehse, Hitashi Ishii, Jacques-Louis Lions, Sanjoy Mitter, Umberto Mosco, Bernt Oksendal, George Papanicolaou, A. Shiryaev, given in the Conference held in Paris on December 4th, 2000 in honor of Professor Alain Bensoussan are included.
In October 1998 a conference was held in Lisbon to celebrate Ludwig Streit's 60th birthday. This book collects some of the papers presented at the conference as well as other essays contributed by the many friends and collaborators who wanted to honor Ludwig Streit's scientific career and personality.The contributions cover many aspects of contemporary mathematical physics. Of particular importance are new results on infinite-dimensional stochastic analysis and its applications to a wide range of physical domains.List of Contributors: S Albeverio, T Hida, L Accardi, I Ya Aref'eva, I V Volovich; A Daletskii, Y Kondratiev, W Karwowski, N Asai, I Kubo, H-H Kuo, J Beckers, Ph Blanchard, G F Dell...
Collecting together twenty-three self-contained articles, this volume presents the current research of a number of renowned scientists in both probability theory and statistics as well as their various applications in economics, finance, the physics of wind-blown sand, queueing systems, risk assessment, turbulence and other areas. The contributions are dedicated to and inspired by the research of Ole E. Barndorff-Nielsen who, since the early 1960s, has been and continues to be a very active and influential researcher working on a wide range of important problems. The topics covered include, but are not limited to, econometrics, exponential families, Lévy processes and infinitely divisible distributions, limit theory, mathematical finance, random matrices, risk assessment, statistical inference for stochastic processes, stochastic analysis and optimal control, time series, and turbulence. The book will be of interest to researchers and graduate students in probability, statistics and their applications.
The theoretical foundation for real options goes back to the mid 1980s and the development of a model that forms the basis for many current applications of real option theory. Over the last decade the theory has rapidly expanded and become enriched thanks to increasing research activity. Modern real option theory may be used for the valuation of entire companies as well as for particular investment projects in the presence of uncertainty. As such, the theory of real options can serve as a tool for more practically oriented decision making, providing management with strategies maximizing its capital market value. This book is devoted to examining a new framework for classifying real options f...
Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. - Coverage of all aspects of quantitative finance including models, computational methods and applications - Provides an overview of new ideas and results - Contributors are leaders of the field
Numerical Methods in Finance describes a wide variety of numerical methods used in financial analysis.
These Proceedings offer a selection of peer-reviewed research and survey papers by some of the foremost international researchers in the fields of finance, energy, stochastics and risk, who present their latest findings on topical problems. The papers cover the areas of stochastic modeling in energy and financial markets; risk management with environmental factors from a stochastic control perspective; and valuation and hedging of derivatives in markets dominated by renewables, all of which further develop the theory of stochastic analysis and mathematical finance. The papers were presented at the first conference on “Stochastics of Environmental and Financial Economics (SEFE)”, being part of the activity in the SEFE research group of the Centre of Advanced Study (CAS) at the Academy of Sciences in Oslo, Norway during the 2014/2015 academic year.
In many areas of finance and stochastics, significant advances have been made since this field of research was opened by Black, Scholes and Merton in 1973. This volume contains a collection of original articles by a number of highly distinguished authors, on research topics that are currently in the focus of interest of both academics and practitioners.
Stochastic analysis has a variety of applications to biological systems as well as physical and engineering problems, and its applications to finance and insurance have bloomed exponentially in recent times. The goal of this book is to present a broad overview of the range of applications of stochastic analysis and some of its recent theoretical developments. This includes numerical simulation, error analysis, parameter estimation, as well as control and robustness properties for stochastic equations. The book also covers the areas of backward stochastic differential equations via the (non-linear) G-Brownian motion and the case of jump processes. Concerning the applications to finance, many of the articles deal with the valuation and hedging of credit risk in various forms, and include recent results on markets with transaction costs.