You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Engineered Biomimicry covers a broad range of research topics in the emerging discipline of biomimicry. Biologically inspired science and technology, using the principles of math and physics, has led to the development of products as ubiquitous as VelcroTM (modeled after the spiny hooks on plant seeds and fruits). Readers will learn to take ideas and concepts like this from nature, implement them in research, and understand and explain diverse phenomena and their related functions. From bioinspired computing and medical products to biomimetic applications like artificial muscles, MEMS, textiles and vision sensors, Engineered Biomimicry explores a wide range of technologies informed by living...
Beltrami fields exist commonly in all areas of wave theory. In particular, Beltrami fields are necessary to analyze electromagnetic wave propagation in isotropic chiral materials, numerous examples of which are found in organic chemistry. Artificial chiral composites are evaluated for electromagnetic engineering purposes as well. In this book a comprehensive analysis of electromagnetic fields in chiral materials has been made.
For decades, the surface-plasmon-polariton wave guided by the interface of simple isotropic materials dominated the scene. However, in recent times research on electromagnetic surface waves guided by planar interfaces has expanded into new and exciting areas. In the 1990's research focused on advancing knowledge of the newly discovered Dyakonov wave. More recently, much of the surface wave research is motivated by the proliferation of nanotechnology and the growing number of materials available with novel properties. This book leads the reader from the relatively simple surface-plasmon-polariton wave with isotropic materials to the latest research on various types of electromagnetic surface ...
This volume is a researcher's reference handbook to the many aspects of nanometer structures. Although intended as a source for the serious researcher, novices will find a great deal of interesting content. The theories covered include nanostructured thin films, photonic bandgap structures, quantum dots, carbon nanotubes, atomistic techniques, nanomechanics, nanofluidics, and quantum information processing. Modeling and simulation research on these topics have now reached a stage of maturity.
Sculptured thin films (STFs) are a class of nanoengineered materials with properties that can be designed and realized in a controllable manner using physical vapor deposition. This text, presented as a course at the SPIE Optical Science and Technology Symposium, couples detailed knowledge of thin-film morphology with the optical response characteristics of STF devices. An accompanying CD contains Mathematica programs for use with the presented formalisms. Thus, readers will learn to design and engineer STF materials and devices for future applications, particularly with optical applications. Graduate students in optics and practicing optical engineers will find the text valuable, as well as those interested in emerging nanotechnologies for optical devices.
The topics of anisotropy and bianisotropy are fundamental to electromagnetics from both theoretical and experimental perspectives. These properties underpin a host of complex and exotic electromagnetic phenomenons in naturally occurring materials and in relativistic scenarios, as well as in artificially produced metamaterials. As a unique guide to this rapidly developing field, the book provides a unified presentation of key classic and recent results on the studies of constitutive relations, spacetime symmetries, planewave propagation, dyadic Green functions, and homogenization of composite materials. This book also offers an up-to-date extension to standard treatments of crystal optics with coverage on both linear and weakly nonlinear regimes.
Atomic theory began more than two and a half millenia ago in Greece and India; but scientific details have emerged — albeit very rapidly — only in our century. This book conveys a glimpse of the grandeur of 20th century physics through nine essays and one interview on the models and modelers of a basic element of matter: the hydrogen atom. The basic ideas are simply presented and illustrated, the mathematical treatments are of a tutorial nature, and facsimile reproductions of ten key papers are included. Using the simple hydrogen atom, educators may use this book to initiate high school students into the grandeur of physics or motivate university students to become science-literate.
This book explores a variety of diverse issues in nanotechnology, including radiation-induced polymerization, cross-linking and grafting; Mossbauer study of nanomaterials; biomedical applications of nanomaterials; graphene and carbon nanotubes; and many more.
The past few decades have seen an explosive increase in our ability to create nanostructures and nanosystems with a great degree of control, using a diversity of techniques. This ability has been accompanied by a similar enhancement in our ability to characterize structures and systems at the nanoscale. This book provides a broad overview of those nanostructures and nanosystems (together termed Nanotechnology). It covers structural characteristics and properties of nanostructures, nanofabrication techniques, methods for characterizing nanostructures, and applications for nanomaterials. The book also provides a thought-provoking assessment of the possible implications of nanotechnology in soc...
Complex-mediums electromagnetics (CME) describes the study of electromagnetic fields in materials with complicated response properties. This truly multidisciplinary field commands the attentions of scientists from physics and optics to electrical and electronic engineering, from chemistry to materials science, to applied mathematics, biophysics, and nanotechnology. This book is a collection of essays to explain complex mediums for optical and electromagnetic applications. All contributors were requested to write with two aims: first, to educate; second, to provide a state-of-the-art review of a particular subtopic. The vast scope of CME exemplified by the actual materials covered in the essays should provide a plethora of opportunities to the novice and the initiated alike.