You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Fractal geometry, based on recursive mathematical schemas, provides a means for modeling a great number of natural phenomena. For this reason, it is of increasing interest to physicists, chemists, biologists, and geographers, among others. A major quality of fractality is that it not only unifies phenomena previously thought to be anomalous or disparate in a single theoretical framework, but it also promotes a return to graphical treatment, which had been almost completely banished from scientific thought in favor of analysis. This book casts a new, lively light on scientific territories still not fully explored. It is designed for research workers, engineers, and experimentalists faced with problems of measure and action in heterogenous materials and environments. Several color plates illustrate the implications and consequences of this theory for most of the questions raised by the taking into consideration of time in a fractal space.
In recent years fractional calculus has played an important role in various fields such as mechanics, electricity, chemistry, biology, economics, modeling, identification, control theory and signal processing. The scope of this book is to present the state of the art in the study of fractional systems and the application of fractional differentiation. Furthermore, the manufacture of nanowires is important for the design of nanosensors and the development of high-yield thin films is vital in procuring clean solar energy. This wide range of applications is of interest to engineers, physicists and mathematicians.
Based on a structured approach to diversity, notably inspired by various forms of diversity of natural origins, Diversity and Non-integer Derivation Applied to System Dynamics provides a study framework to the introduction of the non-integer derivative as a modeling tool. Modeling tools that highlight unsuspected dynamical performances (notably damping performances) in an "integer" approach of mechanics and automation are also included. Written to enable a two-tier reading, this is an essential resource for scientists, researchers, and industrial engineers interested in this subject area. Table of Contents: 1. From Diversity to Unexpected Dynamic Performance. 2. The Robustness of Damping. 3. Fractional Differentiation and its Memory. 4. CRONE Suspension Idea. 5. CRONE Control Idea
Monitoring and diagnosis of electrical machine faults is a scientific and economic issue which is motivated by objectives for reliability and serviceability in electrical drives. This book provides a survey of the techniques used to detect the faults occurring in electrical drives: electrical, thermal and mechanical faults of the electrical machine, faults of the static converter and faults of the energy storage unit. Diagnosis of faults occurring in electrical drives is an essential part of a global monitoring system used to improve reliability and serviceability. This diagnosis is performed with a large variety of techniques: parameter estimation, state observation, Kalman filtering, spect...
In the 60's, control, signals and systems had a common linear algebraic background and, according to their evolution, their respective backgrounds have now dramatically differed. Recovering such a common background, especially in the nonlinear context, is currently a fully open question. The role played by physical models, finite or infinite dimensional, in this hypothetical convergence is extensively discussed in this book. The discussion does not only take place on a theoretical basis but also in the light of two wide classes of applications, among the most active in the current industrially oriented researches: - Electrical and Mechatronical systems; - Chemical Processes and systems appea...
Zusammenfassung: Fractional calculus and its applications are fascinating research areas in many engineering disciplines. This book is a comprehensive collection of research from the author's group, which is one of the most active in the fractional calculus community worldwide and is the birthplace of one of the four MATLAB toolboxes in fractional calculus, the FOTF Toolbox. The book presents high-precision solution algorithms for a variety of fractional-order differential equations, including nonlinear, delay, and boundary value equations. Currently, there are no other universal solvers available for the latter two types of equations. Through this book, readers can systematically study the mathematics and solution methods in the field of fractional calculus and apply these concepts to different engineering fields, particularly control systems engineering This book is a translation of an original Chinese edition. The translation of some chapters was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done
This book aims to provide the basic theory of fractional calculus and its applications based on practical schemes and approaches, illustrated with applicable engineering and technical examples, especially focusing on the fractional-order controller design. In the development of this book, the essential theorems and facts in the first two chapters are proven with rigorous mathematical analyses. In addition, the commonly used definitions of Grünwald-Letnikov, Riemann-Liouville, Caputo, and Miller-Ross fractional derivatives are introduced with their properties proved and linked to fractional-order controller design. The last chapter presents several enlightening scenarios of fractional-order control designs, for example, the suppression of machining chatter, the nonlinear motion control of a multilink robot, the simultaneous tracking and stabilization control of a rotary inverted pendulum, and the idle speed control of an internal combustion engine (ICE).
Covering fractional order theory, simulation and experiments, this book explains how fractional order modelling and fractional order controller design compares favourably with traditional velocity and position control systems. The authors systematically compare the two approaches using applied fractional calculus. Stability theory in fractional order controllers design is also analysed. Presents material suitable for a variety of real-world applications, including hard disk drives, vehicular controls, robot control and micropositioners in DNA microarray analysis Includes extensive experimental results from both lab bench level tests and industrial level, mass-production-ready implementations...
The main subject of the monograph is the fractional calculus in the discrete version. The volume is divided into three main parts. Part one contains a theoretical introduction to the classical and fractional-order discrete calculus where the fundamental role is played by the backward difference and sum. In the second part, selected applications of the discrete fractional calculus in the discrete system control theory are presented. In the discrete system identification, analysis and synthesis, one can consider integer or fractional models based on the fractional-order difference equations. The third part of the book is devoted to digital image processing.
In order to ensure a pedagogical presentation of the fundamentals, this book, which is based on 45 years of experience, endeavors to identify the main principles of the control scheme and its dynamics. The control loop is extensively developed because of the reference it constitutes in control. By establishing the control loop as equivalent to any other control or, more precisely, by making an elementary control loop appear, it becomes possible to reveal a part of this loop in other controls and, thanks to its regulator, qualitatively evaluate the control strategy. A comparative analysis then shows that the complexification of the control scheme does not necessarily go hand in hand with a be...