You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Using an approach that author Alan Laub calls "matrix analysis for grown-ups," this new textbook introduces fundamental concepts of numerical linear algebra and their application to solving certain numerical problems arising in state-space control and systems theory. It is written for advanced undergraduate and beginning graduate students and can be used as a follow-up to Matrix Analysis for Scientists and Engineers (SIAM, 2005), a compact single-semester introduction to matrix analysis for engineers and computational scientists by the same author. Computational Matrix Analysis provides readers with a one-semester introduction to numerical linear algebra; an introduction to statistical condi...
"Prerequisites for using this text are knowledge of calculus and some previous exposure to matrices and linear algebra, including, for example, a basic knowledge of determinants, singularity of matrices, eigenvalues and eigenvectors, and positive definite matrices. There are exercises at the end of each chapter."--BOOK JACKET.
None
The definitive textbook and professional reference on Kalman Filtering – fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.
Control and Dynamic Systems: Advances in Theory Applications, Volume 55: Digital and Numeric Techniques and their Applications in Control Systems, Part 1 of 2 covers advances in numerical and computational techniques for the design of modern complex control systems. This book presents a comprehensive treatment of the many issues that are dealt with in modern complex systems. It discusses the efficacy of significant techniques for robust control design; model reduction; adaptive estimation of discrete-time stochastic systems; parameter estimation; and loop transfer recovery. Students, research workers, and practising engineers will find this book invaluable.
Beginning with linear algebra and later expanding into calculus of variations, Advanced Engineering Mathematics provides accessible and comprehensive mathematical preparation for advanced undergraduate and beginning graduate students taking engineering courses. This book offers a review of standard mathematics coursework while effectively integrating science and engineering throughout the text. It explores the use of engineering applications, carefully explains links to engineering practice, and introduces the mathematical tools required for understanding and utilizing software packages. Provides comprehensive coverage of mathematics used by engineering students Combines stimulating examples...
Control and Dynamic Systems: Advances in Theory and Applications, Volume 56: Digital and Numeric Techniques and their Applications in Control Systems, Part 2 of 2 covers the significant developments in digital and numerical techniques for the analysis and design of modern complex control systems. This volume is composed of 12 chapters and starts with a description of the design techniques of linear constrained discrete-time control systems. The subsequent chapters describe the techniques dealing with robust real-time system identification, the adaptive control algorithms, and the utilization of methods from generalized interpolation and operator theory to deal with a wide range of problems i...
Fixed-interval smoothing is a method of extracting useful information from inaccurate data. It has been applied to problems in engineering, the physical sciences, and the social sciences, in areas such as control, communications, signal processing, acoustics, geophysics, oceanography, statistics, econometrics, and structural analysis. This monograph addresses problems for which a linear stochastic state space model is available, in which case the objective is to compute the linear least-squares estimate of the state vector in a fixed interval, using observations previously collected in that interval. The author uses a geometric approach based on the method of complementary models. Using the ...
Fuzzy logic control has become an important methodology in control engineering. This volume deals with applications of fuzzy logic control in various domains. The contributions are divided into three parts. The first part consists of two state-of-the-art tutorials on fuzzy control and fuzzy modeling. Surveys of advanced methodologies are included in the second part. These surveys address fuzzy decision making and control, fault detection, isolation and diagnosis, complexity reduction in fuzzy systems and neuro-fuzzy methods. The third part contains application-oriented contributions from various fields, such as process industry, cement and ceramics, vehicle control and traffic management, electromechanical and production systems, avionics, biotechnology and medical applications. The book is intended for researchers both from the academic world and from industry.