Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

The Beilinson Complex and Canonical Rings of Irregular Surfaces
  • Language: en
  • Pages: 114

The Beilinson Complex and Canonical Rings of Irregular Surfaces

An important theorem by Beilinson describes the bounded derived category of coherent sheaves on $\mathbb{P n$, yielding in particular a resolution of every coherent sheaf on $\mathbb{P n$ in terms of the vector bundles $\Omega {\mathbb{P n j(j)$ for $0\le j\le n$. This theorem is here extended to weighted projective spaces. To this purpose we consider, instead of the usual category of coherent sheaves on $\mathbb{P ({\rm w )$ (the weighted projective space of weights $\rm w=({\rm w 0,\dots,{\rm w n)$), a suitable category of graded coherent sheaves (the two categories are equivalent if and only if ${\rm w 0=\cdots={\rm w n=1$, i.e. $\mathbb{P ({\rm w )= \mathbb{P n$), obtained by endowing $\...

Finite Sections of Band-Dominated Operators
  • Language: en
  • Pages: 104

Finite Sections of Band-Dominated Operators

The goal of this text is to review recent advances and to present new results in the numerical analysis of the finite sections method for general band and band-dominated operators. The main topics are the stability of the finite sections method and the asymptotic behavior of singular values. The latter topic is closely related with compactness and Fredholm properties of approximation sequences, and the paper can also serve as an introduction into this remarkable field of numerical analysis. Further the author discusses the behavior of approximation numbers, determinants, essential spectra and essential pseudospectra as well as the localization of pseudomodes of finite sections of band-dominated operators.

The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra
  • Language: en
  • Pages: 98

The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra

In this paper the authors apply their results on the geometry of polygons in infinitesimal symmetric spaces and symmetric spaces and buildings to four problems in algebraic group theory. Two of these problems are generalizations of the problems of finding the constraints on the eigenvalues (resp. singular values) of a sum (resp. product) when the eigenvalues (singular values) of each summand (factor) are fixed. The other two problems are related to the nonvanishing of the structure constants of the (spherical) Hecke and representation rings associated with a split reductive algebraic group over $\mathbb{Q}$ and its complex Langlands' dual. The authors give a new proof of the Saturation Conjecture for $GL(\ell)$ as a consequence of their solution of the corresponding saturation problem for the Hecke structure constants for all split reductive algebraic groups over $\mathbb{Q}$.

Weakly Differentiable Mappings between Manifolds
  • Language: en
  • Pages: 88

Weakly Differentiable Mappings between Manifolds

The authors study Sobolev classes of weakly differentiable mappings $f: {\mathbb X}\rightarrow {\mathbb Y}$ between compact Riemannian manifolds without boundary. These mappings need not be continuous. They actually possess less regularity than the mappings in ${\mathcal W}{1, n}({\mathbb X}\, \, {\mathbb Y})\, $, $n=\mbox{dim}\, {\mathbb X}$. The central themes being discussed a

KAM Stability and Celestial Mechanics
  • Language: en
  • Pages: 150

KAM Stability and Celestial Mechanics

KAM theory is a powerful tool apt to prove perpetual stability in Hamiltonian systems, which are a perturbation of integrable ones. The smallness requirements for its applicability are well known to be extremely stringent. A long standing problem, in this context, is the application of KAM theory to ``physical systems'' for ``observable'' values of the perturbation parameters. The authors consider the Restricted, Circular, Planar, Three-Body Problem (RCP3BP), i.e., the problem of studying the planar motions of a small body subject to the gravitational attraction of two primary bodies revolving on circular Keplerian orbits (which are assumed not to be influenced by the small body). When the m...

Invariant Means and Finite Representation Theory of $C^*$-Algebras
  • Language: en
  • Pages: 122

Invariant Means and Finite Representation Theory of $C^*$-Algebras

Various subsets of the tracial state space of a unital C$*$-algebra are studied. The largest of these subsets has a natural interpretation as the space of invariant means. II$ 1$-factor representations of a class of C$*$-algebras considered by Sorin Popa are also studied. These algebras are shown to have an unexpected variety of II$ 1$-factor representations. In addition to developing some general theory we also show that these ideas are related to numerous other problems inoperator algebras.

Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds
  • Language: en
  • Pages: 98

Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds

"Volume 183, number 864 (end of volume)."

Semigroups Underlying First-Order Logic
  • Language: en
  • Pages: 298

Semigroups Underlying First-Order Logic

Boolean, relation-induced, and other operations for dealing with first-order definability Uniform relations between sequences Diagonal relations Uniform diagonal relations and some kinds of bisections or bisectable relations Presentation of ${\mathbf S}_q$, ${\mathbf S}_p$ and related structures Presentation of ${\mathbf S}_{pq}$, ${\mathbf S}_{pe}$ and related structures Appendix. Presentation of ${\mathbf S}_{pqe}$ and related structures Bibliography Index of symbols Index of phrases and subjects List of relations involved in presentations Synopsis of presentations

Operator Valued Hardy Spaces
  • Language: en
  • Pages: 78

Operator Valued Hardy Spaces

The author gives a systematic study of the Hardy spaces of functions with values in the noncommutative $Lp$-spaces associated with a semifinite von Neumann algebra $\mathcal{M .$ This is motivated by matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), as well as by the recent development of noncommutative martingale inequalities. in this paper noncommutative Hardy spaces are defined by noncommutative Lusin integral function, and it isproved that they are equivalent to those defined by noncommutative Littlewood-Paley G-functions. The main results of this paper include: (i) The analogue in the author's setting of the classical Fefferman duality theorem between $\mathcal{H 1$ and $\mathrm{BMO $. (ii) The atomic decomposition of theauthor's noncommutative $\mathcal{H 1.$ (iii) The equivalence between the norms of the noncommutative Hardy spaces and of the noncommutative $Lp$-spaces $(1

The Structure of the Rational Concordance Group of Knots
  • Language: en
  • Pages: 114

The Structure of the Rational Concordance Group of Knots

The author studies the group of rational concordance classes of codimension two knots in rational homology spheres. He gives a full calculation of its algebraic theory by developing a complete set of new invariants. For computation, he relates these invariants with limiting behaviour of the Artin reciprocity over an infinite tower of number fields and analyzes it using tools from algebraic number theory. In higher dimensions it classifies the rational concordance group of knots whose ambient space satisfies a certain cobordism theoretic condition. In particular, he constructs infinitely many torsion elements. He shows that the structure of the rational concordance group is much more complicated than the integral concordance group from a topological viewpoint. He also investigates the structure peculiar to knots in rational homology 3-spheres. To obtain further nontrivial obstructions in this dimension, he develops a technique of controlling a certain limit of the von Neumann $L 2$-signature invariants.