You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the 2016 AMS von Neumann Symposium on Topological Recursion and its Influence in Analysis, Geometry, and Topology, which was held from July 4–8, 2016, at the Hilton Charlotte University Place, Charlotte, North Carolina. The papers contained in the volume present a snapshot of rapid and rich developments in the emerging research field known as topological recursion. It has its origin around 2004 in random matrix theory and also in Mirzakhani's work on the volume of moduli spaces of hyperbolic surfaces. Topological recursion has played a fundamental role in connecting seemingly unrelated areas of mathematics such as matrix models, enumeration of Hurwit...
Aside from the obvious statement that it should be a theory capable of unifying general relativity and quantum field theory, not much is known about the true nature of quantum gravity. New ideas - and there are many of them for this is an exciting field of research - often diverge to a degree where it seems impossible to decide in which of the many possible direction(s) the ongoing developments should be further sustained. The division of the book in two (overlapping) parts reflects the duality between the physical vision and the mathematical construction. The former is represented by tutorial reviews on non-commutative geometry, on space-time discretization and renormalization and on gauge field path integrals. The latter one by lectures on cohomology, on stochastic geometry and on mathematical tools for the effective action in quantum gravity. The book will benefit everyone working or entering the field of quantum gravity research.
This volume contains the proceedings of the workshop Crossing the Walls in Enumerative Geometry, held in May 2018 at Snowbird, Utah. It features a collection of both expository and research articles about mirror symmetry, quantized singularity theory (FJRW theory), and the gauged linear sigma model. Most of the expository works are based on introductory lecture series given at the workshop and provide an approachable introduction for graduate students to some fundamental topics in mirror symmetry and singularity theory, including quasimaps, localization, the gauged linear sigma model (GLSM), virtual classes, cosection localization, $p$-fields, and Saito's primitive forms. These articles help readers bridge the gap from the standard graduate curriculum in algebraic geometry to exciting cutting-edge research in the field. The volume also contains several research articles by leading researchers, showcasing new developments in the field.
This is a proceedings volume from the String-Math conference which took place at the University of Warsaw in 2022. This 12th String-Math conference focused on several research areas actively developing these days. They included generalized (categorical) symmetries in quantum field theory and their relation to topological phases of matter; formal aspects of quantum field theory, in particular twisted holography; various developments in supersymmetric gauge theories, BPS counting and Donaldson–Thomas invariants. Other topics discussed at this conference included new advances in Gromov–Witten theory, curve counting, and Calabi–Yau manifolds. Another broad topic concerned algebraic aspects of conformal field theory, vertex operator algebras, and quantum groups. Furthermore, several other recent developments were presented during the conference, such as understanding the role of operator algebras in the presence of gravity, derivation of gauge-string duality, complexity of black holes, or mathematical aspects of the amplituhedron. This proceedings volume contains articles summarizing 14 conference lectures, devoted to the above topics.
The conference String-Math 2014 was held from June 9–13, 2014, at the University of Alberta. This edition of String-Math is the first to include satellite workshops: “String-Math Summer School” (held from June 2–6, 2014, at the University of British Columbia), “Calabi-Yau Manifolds and their Moduli” (held from June 14–18, 2014, at the University of Alberta), and “Quantum Curves and Quantum Knot Invariants” (held from June 16–20, 2014, at the Banff International Research Station). This volume presents the proceedings of the conference and satellite workshops. For mathematics, string theory has been a source of many significant inspirations, ranging from Seiberg-Witten theo...
This volume contains the proceedings of the conference `String-Math 2013' which was held June 17-21, 2013 at the Simons Center for Geometry and Physics at Stony Brook University. This was the third in a series of annual meetings devoted to the interface of mathematics and string theory. Topics include the latest developments in supersymmetric and topological field theory, localization techniques, the mathematics of quantum field theory, superstring compactification and duality, scattering amplitudes and their relation to Hodge theory, mirror symmetry and two-dimensional conformal field theory, and many more. This book will be important reading for researchers and students in the area, and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.
This book collects various perspectives, contributed by both mathematicians and physicists, on the B-model and its role in mirror symmetry. Mirror symmetry is an active topic of research in both the mathematics and physics communities, but among mathematicians, the “A-model” half of the story remains much better-understood than the B-model. This book aims to address that imbalance. It begins with an overview of several methods by which mirrors have been constructed, and from there, gives a thorough account of the “BCOV” B-model theory from a physical perspective; this includes the appearance of such phenomena as the holomorphic anomaly equation and connections to number theory via modularity. Following a mathematical exposition of the subject of quantization, the remainder of the book is devoted to the B-model from a mathematician’s point-of-view, including such topics as polyvector fields and primitive forms, Givental’s ancestor potential, and integrable systems.
This volume presents surveys from a workshop held during the theme year in geometry and topology at the Centre de recherches mathematiques (CRM, University of Montreal, Canada). The volume is in some senses a sequel to Mirror Symmetry I (1998) and Mirror Symmetry II (1996), co-published by the AMS and International Press. It is intended for graduate students, research mathematicians and physicists working in mathematics and theoretical physics, especially in algebraic or complex geometry or conformal field theory
This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
"This book is a testimony to the BIRS Workshop, and it covers a wide range of topics at the interface of number theory and string theory, with special emphasis on modular forms and string duality. They include the recent advances as well as introductory expositions on various aspects of modular forms, motives, differential equations, conformal field theory, topological strings and Gromov-Witten invariants, mirror symmetry, and homological mirror symmetry. The contributions are roughly divided into three categories: arithmetic and modular forms, geometric and differential equations, and physics and string theory. The book is suitable for researchers working at the interface of number theory and string theory."--BOOK JACKET.