You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With the rapid growth of web search in recent years the problem of modeling its users has started to attract more and more attention of the information retrieval community. This has several motivations. By building a model of user behavior we are essentially developing a better understanding of a user, which ultimately helps us to deliver a better search experience. A model of user behavior can also be used as a predictive device for non-observed items such as document relevance, which makes it useful for improving search result ranking. Finally, in many situations experimenting with real users is just infeasible and hence user simulations based on accurate models play an essential role in u...
With the rapid growth of web search in recent years the problem of modeling its users has started to attract more and more attention of the information retrieval community. This has several motivations. By building a model of user behavior we are essentially developing a better understanding of a user, which ultimately helps us to deliver a better search experience. A model of user behavior can also be used as a predictive device for non-observed items such as document relevance, which makes it useful for improving search result ranking. Finally, in many situations experimenting with real users is just infeasible and hence user simulations based on accurate models play an essential role in u...
Many data-intensive applications that use machine learning or artificial intelligence techniques depend on humans providing the initial dataset, enabling algorithms to process the rest or for other humans to evaluate the performance of such algorithms. Not only can labeled data for training and evaluation be collected faster, cheaper, and easier than ever before, but we now see the emergence of hybrid human-machine software that combines computations performed by humans and machines in conjunction. There are, however, real-world practical issues with the adoption of human computation and crowdsourcing. Building systems and data processing pipelines that require crowd computing remains difficult. In this book, we present practical considerations for designing and implementing tasks that require the use of humans and machines in combination with the goal of producing high-quality labels.
Genealogies document relationships between persons involved in historical events. Information about the events is parsed from communications from the past. This book explores a way to organize information from multiple communications into a trustworthy representation of a genealogical history of the modern world. The approach defines metrics for evaluating the consistency, correctness, closure, connectivity, completeness, and coherence of a genealogy. The metrics are evaluated using a 312,000-person research genealogy that explores the common ancestors of the royal families of Europe. A major result is that completeness is defined by a genealogy symmetry property driven by two exponential pr...
Since user study design has been widely applied in search interactions and information retrieval (IR) systems evaluation studies, a deep reflection and meta-evaluation of interactive IR (IIR) user studies is critical for sharpening the instruments of IIR research and improving the reliability and validity of the conclusions drawn from IIR user studies. To this end, we developed a faceted framework for supporting user study design, reporting, and evaluation based on a systematic review of the state-of-the-art IIR research papers recently published in several top IR venues (n=462). Within the framework, we identify three major types of research focuses, extract and summarize facet values from ...
Everybody knows what relevance is. It is a "ya'know" notion, concept, idea–no need to explain whatsoever. Searching for relevant information using information technology (IT) became a ubiquitous activity in contemporary information society. Relevant information means information that pertains to the matter or problem at hand—it is directly connected with effective communication. The purpose of this book is to trace the evolution and with it the history of thinking and research on relevance in information science and related fields from the human point of view. The objective is to synthesize what we have learned about relevance in several decades of investigation about the notion in infor...
This book deals with a hard problem that is inherent to human language: ambiguity. In particular, we focus on author name ambiguity, a type of ambiguity that exists in digital bibliographic repositories, which occurs when an author publishes works under distinct names or distinct authors publish works under similar names. This problem may be caused by a number of reasons, including the lack of standards and common practices, and the decentralized generation of bibliographic content. As a consequence, the quality of the main services of digital bibliographic repositories such as search, browsing, and recommendation may be severely affected by author name ambiguity. The focal point of the book...
Big data and human-computer information retrieval (HCIR) are changing IR. They capture the dynamic changes in the data and dynamic interactions of users with IR systems. A dynamic system is one which changes or adapts over time or a sequence of events. Many modern IR systems and data exhibit these characteristics which are largely ignored by conventional techniques. What is missing is an ability for the model to change over time and be responsive to stimulus. Documents, relevance, users and tasks all exhibit dynamic behavior that is captured in data sets typically collected over long time spans and models need to respond to these changes. Additionally, the size of modern datasets enforces li...
With the proliferation of social network services, more and more social users, such as individuals and organizations, are simultaneously involved in multiple social networks for various purposes. In fact, multiple social networks characterize the same social users from different perspectives, and their contexts are usually consistent or complementary rather than independent. Hence, as compared to using information from a single social network, appropriate aggregation of multiple social networks offers us a better way to comprehensively understand the given social users. Learning across multiple social networks brings opportunities to new services and applications as well as new insights on u...
Question answering (QA) systems on the Web try to provide crisp answers to information needs posed in natural language, replacing the traditional ranked list of documents. QA, posing a multitude of research challenges, has emerged as one of the most actively investigated topics in information retrieval, natural language processing, and the artificial intelligence communities today. The flip side of such diverse and active interest is that publications are highly fragmented across several venues in the above communities, making it very difficult for new entrants to the field to get a good overview of the topic. Through this book, we make an attempt towards mitigating the above problem by prov...