You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book concerns the study of the structure of identities of PI-algebras over a field of characteristic zero. In the first chapter, the author brings out the connection between varieties of algebras and finitely-generated superalgebras. The second chapter examines graded identities of finitely-generated PI-superalgebras. One of the results proved concerns the decomposition of T-ideals, which is very useful for the study of specific varieties. In the fifth section of Chapter Two, the author solves Specht's problem, which asks whether every associative algebra over a field of characteristic zero has a finite basis of identities. The book closes with an application of methods and results established earlier: the author finds asymptotic bases of identities of algebras with unity satisfying all of the identities of the full algebra of matrices of order two.
A Special Session on affine and algebraic geometry took place at the first joint meeting between the American Mathematical Society (AMS) and the Real Sociedad Matematica Espanola (RSME) held in Seville (Spain). This volume contains articles by participating speakers at the Session. The book contains research and survey papers discussing recent progress on the Jacobian Conjecture and affine algebraic geometry and includes a large collection of open problems. It is suitable for graduate students and research mathematicians interested in algebraic geometry.
This book provides historical background and a complete overview of the qualitative theory of foliations and differential dynamical systems. Senior mathematics majors and graduate students with background in multivariate calculus, algebraic and differential topology, differential geometry, and linear algebra will find this book an accessible introduction. Upon finishing the book, readers will be prepared to take up research in this area. Readers will appreciate the book for its highly visual presentation of examples in low dimensions. The author focuses particularly on foliations with compact leaves, covering all the important basic results. Specific topics covered include: dynamical systems on the torus and the three-sphere, local and global stability theorems for foliations, the existence of compact leaves on three-spheres, and foliated cobordisms on three-spheres. Also included is a short introduction to the theory of differentiable manifolds.
This book is aimed at researchers and students in physics, mathematics, and engineering. It contains the first systematic presentation of a general approach to the integration of singularly perturbed differential equations describing nonuniform transitions, such as the occurrence of a boundary layer, discontinuities, boundary effects and so on. The method of regularization of singular perturbations presented here can be applied to the asymptotic integration of systems of ordinary and partial differential equations.
There are a number of very good books available on linear algebra. However, new results in linear algebra appear constantly, as do new, simpler, and better proofs of old results. Many of these results and proofs obtained in the past thirty years are accessible to undergraduate mathematics majors, but are usually ignored by textbooks. In addition, more than a few interesting old results are not covered in many books. In this book, the author provides the basics of linear algebra, with an emphasis on new results and on nonstandard and interesting proofs. The book features about 230 problems with complete solutions. It can serve as a supplementary text for an undergraduate or graduate algebra course.
This book is an introduction to the remarkable work of Vaughan Jones and Victor Vassiliev on knot and link invariants and its recent modifications and generalizations, including a mathematical treatment of Jones-Witten invariants. The mathematical prerequisites are minimal compared to other monographs in this area. Numerous figures and problems make this book suitable as a graduate level course text or for self-study.
"The book is devoted to geometry of algebraic varieties in projective spaces. Among the objects considered in some detail are tangent and secant varieties, Gauss maps, dual varieties, hyperplane sections, projections, and varieties of small codimension. Emphasis is made on the study of interplay between irregular behavior of (higher) secant varieties and irregular tangencies to the original variety. Classification of varieties with unusual tangential properties yields interesting examples many of which arise as orbits of representations of algebraic groups."--ABSTRACT.
Students often find, in setting out to study algebraic geometry, that most of the serious textbooks on the subject require knowledge of ring theory, field theory, local rings, and transcendental field extensions, and even sheaf theory. Often the expected background goes well beyond college mathematics. This book, aimed at senior undergraduates and graduate students, grew out of Miyanishi's attempt to lead students to an understanding of algebraic surfaces while presenting thenecessary background along the way. Originally published in Japanese in 1990, it presents a self-contained introduction to the fundamentals of algebraic geometry. This book begins with background on commutative algebras, sheaf theory, and related cohomology theory. The next part introduces schemes andalgebraic varieties, the basic language of algebraic geometry. The last section brings readers to a point at which they can start to learn about the classification of algebraic surfaces.
This book deals with two old mathematical problems. The first is the problem of constructing an analog of a Lie group for general nonlinear Poisson brackets. The second is the quantization problem for such brackets in the semiclassical approximation (which is the problem of exact quantization for the simplest classes of brackets). These problems are progressively coming to the fore in the modern theory of differential equations and quantum theory, since the approach based on constructions of algebras and Lie groups seems, in a certain sense, to be exhausted. The authors' main goal is to describe in detail the new objects that appear in the solution of these problems. Many ideas of algebra, modern differential geometry, algebraic topology, and operator theory are synthesized here. The authors prove all statements in detail, thus making the book accessible to graduate students.