You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This textbook introduces and explains the basic concepts on which statics is based utilizing real engineering examples. The authors emphasize the learning process by showing a real problem, analyzing it, simplifying it, and developing a way to solve it. This feature teaches students intuitive thinking in solving real engineering problems using the fundamentals of Newton’s laws. This book also: · Stresses representation of physical reality in ways that allow students to solve problems and obtain meaningful results · Emphasizes identification of important features of the structure that should be included in a model and which features may be omitted · Facilitates students' understanding and mastery of the "flow of thinking" practiced by professional engineers
This Encyclopedia covers the entire science of continuum mechanics including the mechanics of materials and fluids. The encyclopedia comprises mathematical definitions for continuum mechanical modeling, fundamental physical concepts, mechanical modeling methodology, numerical approaches and many fundamental applications. The modelling and analytical techniques are powerful tools in mechanical civil and areospsace engineering, plus in related fields of plasticity, viscoelasticity and rheology. Tensor-based and reference-frame-independent, continuum mechanics has recently found applications in geophysics and materials.
This book compiles all current information on the different types of functionalization of carbon nanotubes (CNTs) and graphene, both covalent and non-covalent. The book starts with a general overview of the synthesis, characterization and application of functionalized CNTs and graphene. Special attention is dedicated to the characterization of functionalized materials, a topic rarely addressed on the literature. The authors provide a comparison between the functionalization of these two types of carbon materials.
The 37 expository articles in this volume provide broad coverage of important topics relating to the theory, methods, and applications of goodness-of-fit tests and model validity. The book is divided into eight parts, each of which presents topics written by expert researchers in their areas. Key features include: * state-of-the-art exposition of modern model validity methods, graphical techniques, and computer-intensive methods * systematic presentation with sufficient history and coverage of the fundamentals of the subject * exposure to recent research and a variety of open problems * many interesting real life examples for practitioners * extensive bibliography, with special emphasis on recent literature * subject index This comprehensive reference work will serve the statistical and applied mathematics communities as well as practitioners in the field.
The contents have been divided into sections on physical states of polymers and characterization techniques. Chapters on physical states include discussions of the rubber elastic state, the glassy state, melts and concentrated solutions, the crystalline state, and the mesomorphic state. Characterization techniques described are molecular spectroscopy and scattering techniques.
Mineral wool has a unique range of properties combining high thermal resistance with long-term stability. It is made from molten glass, stone or slag that is spun into a fibre-like structure which creates a combination of properties that no other insulation material can match. It has the ability to save energy, minimize pollution, combat noise, reduce the risk of fire and protect life and property in the event of fire. Mineral wool: Production and properties describes the technological process of mineral wool production and the physical characteristics of the melt and theoretical bases of multiregression and dimensionless theory. This is followed by the introduction of the fibre cooling mode...
Representing the first text to cover this exciting new area of research, this book will describe synthesis techniques of CNWs, their characterization and various expected applications using CNWs. Carbon-nanowalls (CNWs) can be described as two-dimensional graphite nanostructures with edges comprised of stacks of plane graphene sheets standing almost vertically on the substrate. These sheets form a wall structure with a high aspect ratio. The thickness of CNWs ranges from a few nm to a few tens of nm. The large surface area and sharp edges of CNWs may prove useful for a number of applications such as electrochemical devices, field electron emitters, storage materials for hydrogen gas, catalyst support. In particular, vertically standing CNWs with a high surface-to-volume ratio, serve as an ideal material for catalyst support for fuel cells and in gas storage materials.
This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to d...
This book, consisting of 21 articles, including three review papers, written by research groups of experts in the field, considers recent research on reinforced polymer composites. Most of them relate to the fiber-reinforced polymer composites, which are a real hot topic in the field. Depending on the reinforcing fiber nature, such composites are divided into synthetic and natural fiber-reinforced ones. Synthetic fibers, such as carbon, glass, or basalt, provide more stiffness, while natural fibers, such as jute, flax, bamboo, kenaf, and others, are inexpensive and biodegradable, making them environmentally friendly. To acquire the benefits of design flexibility and recycling possibilities, ...