You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains selected expository lectures delivered at the 2018 Maurice Auslander Distinguished Lectures and International Conference, held April 25–30, 2018, at the Woods Hole Oceanographic Institute, Woods Hole, MA. Reflecting recent developments in modern representation theory of algebras, the selected topics include an introduction to a new class of quiver algebras on surfaces, called “geodesic ghor algebras”, a detailed presentation of Feynman categories from a representation-theoretic viewpoint, connections between representations of quivers and the structure theory of Coxeter groups, powerful new applications of approximable triangulated categories, new results on the heart of a t t-structure, and an introduction to methods of constructive category theory.
This volume contains the proceedings of the Maurice Auslander Distinguished Lectures and International Conference, held April 25-30, 2012, in Falmouth, MA. The representation theory of finite dimensional algebras and related topics, especially cluster combinatorics, is a very active topic of research. This volume contains papers covering both the history and the latest developments in this topic. In particular, Otto Kerner gives a review of basic theorems and latest results about wild hereditary algebras, Yuri Berest develops the theory of derived representation schemes, and Markus Schmidmeier presents new applications of arc diagrams.
This volume contains selected expository lectures delivered at the Maurice Auslander Distinguished Lectures and International Conference, held May 1–6, 2014, at the Woods Hole Oceanographic Institute, Woods Hole, MA. Several significant developments of the last decade in representation theory of finite-dimensional algebras are related to combinatorics. Three of the five lectures in this volume deal, respectively, with the Catalan combinatorics, the combinatorics of Gelfand-Zetlin polytopes, and the combinatorics of tilting modules. The remaining papers present history and recent advances in the study of left orders in left Artinian rings and a survey on invariant theory of Artin-Schelter regular algebras.
This book contains the proceedings of the Fifth International Conference on Noncommutative Rings and their Applications, held from June 12–15, 2017, at the University of Artois, Lens, France. The papers are related to noncommutative rings, covering topics such as: ring theory, with both the elementwise and more structural approaches developed; module theory with popular topics such as automorphism invariance, almost injectivity, ADS, and extending modules; and coding theory, both the theoretical aspects such as the extension theorem and the more applied ones such as Construction A or Reed–Muller codes. Classical topics like enveloping skewfields, weak Hopf algebras, and tropical algebras are also presented.
This volume contains selected expository lectures delivered at the annual Maurice Auslander Distinguished Lectures and International Conference over the last several years. Reflecting the diverse landscape of modern representation theory of algebras, the selected articles include: a quick introduction to silting modules; a survey on the first decade of co-t-structures in triangulated categories; a functorial approach to the notion of module; a representation-theoretic approach to recollements in abelian categories; new examples of applications of relative homological algebra; connections between Coxeter groups and quiver representations; and recent progress on limits of approximation theory.
This volume contains the proceedings of the 18th International Conference on Arithmetic, Geometry, Cryptography, and Coding Theory, held (online) from May 31 to June 4, 2021. For over thirty years, the biennial international conference AGC$^2$T (Arithmetic, Geometry, Cryptography, and Coding Theory) has brought researchers together to forge connections between arithmetic geometry and its applications to coding theory and to cryptography. The papers illustrate the fruitful interaction between abstract theory and explicit computations, covering a large range of topics, including Belyi maps, Galois representations attached to elliptic curves, reconstruction of curves from their Jacobians, isogeny graphs of abelian varieties, hypergeometric equations, and Drinfeld modules.
This volume contains the proceedings of two AMS Special Sessions “Recent Developments on Analysis and Computation for Inverse Problems for PDEs,” virtually held on March 13–14, 2021, and “Recent Advances in Inverse Problems for Partial Differential Equations,” virtually held on October 23–24, 2021. The papers in this volume focus on new results on numerical methods for various inverse problems arising in electrical impedance tomography, inverse scattering in radar and optics problems, reconstruction of initial conditions, control of acoustic fields, and stock price forecasting. The authors studied iterative and non-iterative approaches such as optimization-based, globally convergent, sampling, and machine learning-based methods. The volume provides an interesting source on advances in computational inverse problems for partial differential equations.
This book is a translation from Russian of Part II of the book Mathematics Through Problems: From Olympiads and Math Circles to Profession. Part I, Algebra, was recently published in the same series. Part III, Combinatorics, will be published soon. The main goal of this book is to develop important parts of mathematics through problems. The authors tried to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover and recreate much of elementary mathematics and start edging into more sophisticated topics such as projective and affine geometry, solid geometry, and so on, thus building a bridge between standard ...
This book is concerned with the role played by modules of infinite length when dealing with problems in the representation theory of groups and algebras, but also in topology and geometry; it shows the intriguing interplay between finite and infinite length modules.
Nonassociative mathematics is a broad research area that studies mathematical structures violating the associative law x(yz)=(xy)z. The topics covered by nonassociative mathematics include quasigroups, loops, Latin squares, Lie algebras, Jordan algebras, octonions, racks, quandles, and their applications. This volume contains the proceedings of the Fourth Mile High Conference on Nonassociative Mathematics, held from July 29–August 5, 2017, at the University of Denver, Denver, Colorado. Included are research papers covering active areas of investigation, survey papers covering Leibniz algebras, self-distributive structures, and rack homology, and a sampling of applications ranging from Yang-Mills theory to the Yang-Baxter equation and Laver tables. An important aspect of nonassociative mathematics is the wide range of methods employed, from purely algebraic to geometric, topological, and computational, including automated deduction, all of which play an important role in this book.