Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Potential Theory on Infinite-Dimensional Abelian Groups
  • Language: en
  • Pages: 193

Potential Theory on Infinite-Dimensional Abelian Groups

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high ...

Random Walks, Boundaries and Spectra
  • Language: en
  • Pages: 345

Random Walks, Boundaries and Spectra

These proceedings represent the current state of research on the topics 'boundary theory' and 'spectral and probability theory' of random walks on infinite graphs. They are the result of the two workshops held in Styria (Graz and St. Kathrein am Offenegg, Austria) between June 29th and July 5th, 2009. Many of the participants joined both meetings. Even though the perspectives range from very different fields of mathematics, they all contribute with important results to the same wonderful topic from structure theory, which, by extending a quotation of Laurent Saloff-Coste, could be described by 'exploration of groups by random processes'.

Groups, Graphs and Random Walks
  • Language: en
  • Pages: 539

Groups, Graphs and Random Walks

An up-to-date, panoramic account of the theory of random walks on groups and graphs, outlining connections with various mathematical fields.

Dirichlet Forms and Stochastic Processes
  • Language: en
  • Pages: 457

Dirichlet Forms and Stochastic Processes

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.

Probability Theory
  • Language: en
  • Pages: 541

Probability Theory

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high ...

Measure and Integration Theory
  • Language: en
  • Pages: 249

Measure and Integration Theory

This book gives a straightforward introduction to the field as it is nowadays required in many branches of analysis and especially in probability theory. The first three chapters (Measure Theory, Integration Theory, Product Measures) basically follow the clear and approved exposition given in the author's earlier book on "Probability Theory and Measure Theory". Special emphasis is laid on a complete discussion of the transformation of measures and integration with respect to the product measure, convergence theorems, parameter depending integrals, as well as the Radon-Nikodym theorem. The final chapter, essentially new and written in a clear and concise style, deals with the theory of Radon ...

Integral Representation Theory
  • Language: en
  • Pages: 732

Integral Representation Theory

This monograph presents the state of the art of convexity, with an emphasis to integral representation. The exposition is focused on Choquet's theory of function spaces with a link to compact convex sets. An important feature of the book is an interplay between various mathematical subjects, such as functional analysis, measure theory, descriptive set theory, Banach spaces theory and potential theory. A substantial part of the material is of fairly recent origin and many results appear in the book form for the first time. The text is self-contained and covers a wide range of applications. From the contents: Geometry of convex sets Choquet theory of function spaces Affine functions on compact convex sets Perfect classes of functions and representation of affine functions Simplicial function spaces Choquet's theory of function cones Topologies on boundaries Several results on function spaces and compact convex sets Continuous and measurable selectors Construction of function spaces Function spaces in potential theory and Dirichlet problem Applications

Annual Report
  • Language: en
  • Pages: 444

Annual Report

  • Type: Book
  • -
  • Published: 2000
  • -
  • Publisher: Unknown

None

Annales de la faculté des sciences de Toulouse
  • Language: en
  • Pages: 324

Annales de la faculté des sciences de Toulouse

  • Type: Book
  • -
  • Published: 2002
  • -
  • Publisher: Unknown

None

Discontinuous Groups of Isometries in the Hyperbolic Plane
  • Language: en
  • Pages: 389

Discontinuous Groups of Isometries in the Hyperbolic Plane

This is an introductory textbook on isometry groups of the hyperbolic plane. Interest in such groups dates back more than 120 years. Examples appear in number theory (modular groups and triangle groups), the theory of elliptic functions, and the theory of linear differential equations in the complex domain (giving rise to the alternative name Fuchsian groups). The current book is based on what became known as the famous Fenchel-Nielsen manuscript. Jakob Nielsen (1890-1959) started this project well before World War II, and his interest arose through his deep investigations on the topology of Riemann surfaces and from the fact that the fundamental group of a surface of genus greater than one is represented by such a discontinuous group. Werner Fenchel (1905-1988) joined the project later and overtook much of the preparation of the manuscript. The present book is special because of its very complete treatment of groups containing reversions and because it avoids the use of matrices to represent Moebius maps. This text is intended for students and researchers in the many areas of mathematics that involve the use of discontinuous groups.