You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A new approach to teaching calculus that uses historical examples and draws on applications from science and engineering. Breaking the mold of existing calculus textbooks, Calculus in Context draws students into the subject in two new ways. Part I develops the mathematical preliminaries (including geometry, trigonometry, algebra, and coordinate geometry) within the historical frame of the ancient Greeks and the heliocentric revolution in astronomy. Part II starts with comprehensive and modern treatments of the fundamentals of both differential and integral calculus, then turns to a wide-ranging discussion of applications. Students will learn that core ideas of calculus are central to concept...
How mathematics helped build the world's most important buildings from early Egypt to the present From the pyramids and the Parthenon to the Sydney Opera House and the Bilbao Guggenheim, this book takes readers on an eye-opening tour of the mathematics behind some of the world's most spectacular buildings. Beautifully illustrated, the book explores the milestones in elementary mathematics that enliven the understanding of these buildings and combines this with an in-depth look at their aesthetics, history, and structure. Whether using trigonometry and vectors to explain why Gothic arches are structurally superior to Roman arches, or showing how simple ruler and compass constructions can prod...
This introductory calculus text was developed by the author through his teaching of an honors calculus course at Notre Dame. The book develops calculus, as well as the necessary trigonometry and analytic geometry, from witin the relevant historical context, and yet it is not a textbook in the history of mathematics as such. The notation is modern, and the material is selected to cover the basics of the subject. Special emphasis is placed on pedagogy throughout. Whhile emphasizing the broad applications of the subject, emphasis is placed on the mathematical content of the subject.
Contains the proceedings of the 1983 Seminar on Quadratic and Hermitian Forms held at McMaster University, July 1983. Between 1945 and 1965, most of the work in quadratic (and hermitian) forms took place in arithmetic theory (M Eichler, M Kneser, O T O'Meara).
The proceedings of an AMS special session on finite geometries and combinatorial designs. Topics range over finite geometry, combinatorial designs, their automorphism groups and related structures.
Dedicated to the memory of the Soviet mathematician S D Berman (1922-1987), this work covers topics including Berman's achievements in coding theory, including his pioneering work on abelian codes and his results on the theory of threshold functions.
This volume contains the proceedings of the Workshop on Logic and Computation, held in July 1987 at Carnegie-Mellon University. The focus of the workshop was the refined interaction between mathematics and computation theory, one of the most fascinating and potentially fruitful developments in logic. The importance of this interaction lies not only in the emergence of the computer as a powerful tool in mathematics research, but also in the various attempts to carry out significant parts of mathematics in computationally informative ways. The proceedings pursue three complementary aims: to develop parts of mathematics under minimal set-theoretic assumptions; to provide formal frameworks suitable for computer implementation; and to extract, from formal proofs, mathematical and computational information. Aimed at logicians, mathematicians, and computer scientists, this volume is rich in results and replete with mathematical, logical, and computational problems.
In the mid-1960's, several Italian mathematicians began to study the connections between classical arguments in commutative algebra and algebraic geometry, and the contemporaneous development of algebraic K-theory in the US. These connections were exemplified by the work of Andreotti-Bombieri, Salmon, and Traverso on seminormality, and by Bass-Murthy on the Picard groups of polynomial rings. Interactions proceeded far beyond this initial point to encompass Chow groups of singular varieties, complete intersections, and applications of K-theory to arithmetic and real geometry. This volume contains the proceedings from a US-Italy Joint Summer Seminar, which focused on this circle of ideas. The conference, held in June 1989 in Santa Margherita Ligure, Italy, was supported jointly by the Consiglio Nazionale delle Ricerche and the National Science Foundation. The book contains contributions from some of the leading experts in this area.
In this volume, the authors present their 1972 proof of the celebrated Four Color Theorem in a detailed but self-contained exposition accessible to a general mathematical audience. An emended version of the authors' proof of the theorem, the book contains the full text of the supplements and checklists, which originally appeared on microfiche. The thiry-page introduction, intended for nonspecialists, provides some historical background of the theorem and details of the authors' proof. In addition, the authors have added an appendix which treats in much greater detail the argument for situations in which reducible configurations are immersed rather than embedded in triangulations. This result leads to a proof that four coloring can be accomplished in polynomial time.
The last few years have seen a number of major developments demonstrating that the long-term behavior of solutions of a very large class of partial differential equations possesses a striking resemblance to the behavior of solutions of finite dimensional dynamical systems, or ordinary differential equations. The first of these advances was the discovery that a dissipative PDE has a compact, global attractor with finite Hausdorff and fractal dimensions. More recently, it was shown that some of these PDEs possess a finite dimensional inertial manifold-that is, an invariant manifold containing the attractor and exponentially attractive trajectories. With the improved understanding of the exact ...