You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is an introduction to financial mathematics. The first part of the book studies a simple one-period model which serves as a building block for later developments. Topics include the characterization of arbitrage-free markets, preferences on asset profiles, an introduction to equilibrium analysis, and monetary measures of risk. In the second part, the idea of dynamic hedging of contingent claims is developed in a multiperiod framework. Such models are typically incomplete: They involve intrinsic risks which cannot be hedged away completely. Topics include martingale measures, pricing formulas for derivatives, American options, superhedging, and hedging strategies with minimal shortfall risk. In addition to many corrections and improvements, this second edition contains several new sections, including a systematic discussion of law-invariant risk measures and of the connections between American options, superhedging, and dynamic risk measures.
This book is an introduction to financial mathematics. It is intended for graduate students in mathematics and for researchers working in academia and industry. The focus on stochastic models in discrete time has two immediate benefits. First, the probabilistic machinery is simpler, and one can discuss right away some of the key problems in the theory of pricing and hedging of financial derivatives. Second, the paradigm of a complete financial market, where all derivatives admit a perfect hedge, becomes the exception rather than the rule. Thus, the need to confront the intrinsic risks arising from market incomleteness appears at a very early stage. The first part of the book contains a study...
In many areas of finance and stochastics, significant advances have been made since this field of research was opened by Black, Scholes and Merton in 1973. This volume contains a collection of original articles by a number of highly distinguished authors, on research topics that are currently in the focus of interest of both academics and practitioners.
Since the publication of the first edition of this book, the area of mathematical finance has grown rapidly, with financial analysts using more sophisticated mathematical concepts, such as stochastic integration, to describe the behavior of markets and to derive computing methods. Maintaining the lucid style of its popular predecessor, this concise and accessible introduction covers the probabilistic techniques required to understand the most widely used financial models. Along with additional exercises, this edition presents fully updated material on stochastic volatility models and option pricing as well as a new chapter on credit risk modeling. It contains many numerical experiments and real-world examples taken from the authors' own experiences. The book also provides all of the necessary stochastic calculus theory and implements some of the algorithms using SciLab. Key topics covered include martingales, arbitrage, option pricing, and the Black-Scholes model.
The Handbook on Systemic Risk, written by experts in the field, provides researchers with an introduction to the multifaceted aspects of systemic risks facing the global financial markets. The Handbook explores the multidisciplinary approaches to analyzing this risk, the data requirements for further research, and the recommendations being made to avert financial crisis. The Handbook is designed to encourage new researchers to investigate a topic with immense societal implications as well as to provide, for those already actively involved within their own academic discipline, an introduction to the research being undertaken in other disciplines. Each chapter in the Handbook will provide researchers with a superior introduction to the field and with references to more advanced research articles. It is the hope of the editors that this Handbook will stimulate greater interdisciplinary academic research on the critically important topic of systemic risk in the global financial markets.
Key readings in risk management from CFA Institute, the preeminent organization representing financial analysts Risk management may have been the single most important topic in finance over the past two decades. To appreciate its complexity, one must understand the art as well as the science behind it. Risk Management: Foundations for a Changing Financial World provides investment professionals with a solid framework for understanding the theory, philosophy, and development of the practice of risk management by Outlining the evolution of risk management and how the discipline has adapted to address the future of managing risk Covering the full range of risk management issues, including firm,...
Aimed primarily at graduate students and researchers, this text is a comprehensive course in modern probability theory and its measure-theoretical foundations. It covers a wide variety of topics, many of which are not usually found in introductory textbooks. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in the world of probability theory. In addition, plenty of figures, computer simulations, biographic details of key mathematicians, and a wealth of examples support and enliven the presentation.
This outstanding collection of articles includes papers presented at the Fields Institute, Toronto, as part of the Thematic Program in Quantitative Finance that took place in the first six months of the year 2010. The scope of the volume in very broad, including papers on foundational issues in mathematical finance, papers on computational finance, and papers on derivatives and risk management. Many of the articles contain path-breaking insights that are relevant to the developing new order of post-crisis financial risk management.
At present, computational methods have received considerable attention in economics and finance as an alternative to conventional analytical and numerical paradigms. This Special Issue brings together both theoretical and application-oriented contributions, with a focus on the use of computational techniques in finance and economics. Examined topics span on issues at the center of the literature debate, with an eye not only on technical and theoretical aspects but also very practical cases.
Investment and risk management problems are fundamental problems for financial institutions and involve both speculative and hedging decisions. A structured approach to these problems naturally leads one to the field of applied mathematics in order to translate subjective probability beliefs and attitudes towards risk and reward into actual decisions. In Risk and Portfolio Analysis the authors present sound principles and useful methods for making investment and risk management decisions in the presence of hedgeable and non-hedgeable risks using the simplest possible principles, methods, and models that still capture the essential features of the real-world problems. They use rigorous, yet e...