You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Discusses, from a working mathematician's point of view, the mystery of mathematical intuition: Why are certain mathematical concepts more intuitive than others? And to what extent does the 'small scale' structure of mathematical concepts and algorithms reflect the workings of the human brain?
Matroids appear in diverse areas of mathematics, from combinatorics to algebraic topology and geometry, and "Coxeter Matroids" provides an intuitive and interdisciplinary treatment of their theory. In this text, matroids are examined in terms of symmetric and finite reflection groups; also, symplectic matroids and the more general coxeter matroids are carefully developed. The Gelfand-Serganova theorem, which allows for the geometric interpretation of matroids as convex polytopes with certain symmetry properties, is presented, and in the final chapter, matroid representations and combinatorial flag varieties are discussed. With its excellent bibliography and index and ample references to current research, this work will be useful for graduate students and research mathematicians.
This graduate/advanced undergraduate textbook contains a systematic and elementary treatment of finite groups generated by reflections. The approach is based on fundamental geometric considerations in Coxeter complexes, and emphasizes the intuitive geometric aspects of the theory of reflection groups. Key features include: many important concepts in the proofs are illustrated in simple drawings, which give easy access to the theory; a large number of exercises at various levels of difficulty; some Euclidean geometry is included along with the theory of convex polyhedra; no prerequisites are necessary beyond the basic concepts of linear algebra and group theory; and a good index and bibliography The exposition is directed at advanced undergraduates and first-year graduate students.
To find "criteria of simplicity" was the goal of David Hilbert's recently discovered twenty-fourth problem on his renowned list of open problems given at the 1900 International Congress of Mathematicians in Paris. At the same time, simplicity and economy of means are powerful impulses in the creation of artworks. This was an inspiration for a conference, titled the same as this volume, that took place at the Graduate Center of the City University of New York in April of 2013. This volume includes selected lectures presented at the conference, and additional contributions offering diverse perspectives from art and architecture, the philosophy and history of mathematics, and current mathematical practice.
The second Arolla conference on algebraic topology brought together specialists covering a wide range of homotopy theory and $K$-theory. These proceedings reflect both the variety of talks given at the conference and the diversity of promising research directions in homotopy theory. The articles contained in this volume include significant contributions to classical unstable homotopy theory, model category theory, equivariant homotopy theory, and the homotopy theory of fusionsystems, as well as to $K$-theory of both local fields and $C*$-algebras.
The book is devoted to the theory of groups of finite Morley rank. These groups arise in model theory and generalize the concept of algebraic groups over algebraically closed fields. The book contains almost all the known results in the subject. Trying to attract pure group theorists in thesubject and to prepare the graduate student to start the research in the area, the authors adopted an algebraic and self evident point of view rather than a model theoretic one, and developed the theory from scratch. All the necessary model theoretical and group theoretical notions are explained inlength. The book is full of exercises and examples and one of its chapters contains a discussion of open problems and a program for further research.
This collection presents significant contributions from an international network project on mathematical cultures, including essays from leading scholars in the history and philosophy of mathematics and mathematics education. Mathematics has universal standards of validity. Nevertheless, there are local styles in mathematical research and teaching, and great variation in the place of mathematics in the larger cultures that mathematical practitioners belong to. The reflections on mathematical cultures collected in this book are of interest to mathematicians, philosophers, historians, sociologists, cognitive scientists and mathematics educators.
The book is based on results from the Russian expedition in the region of the Antarctic Peninsula and Powell Basin in the northern part of the Weddell Sea, as well as on the review of earlier research in the region. The main goal of the research was to collect the newest data and study the physical properties and ecology of this key region of the Southern Ocean. Data analysis is supplemented with numerical modeling of the atmosphere-ocean interaction and circulation in the adjacent region, including research on rogue waves. The focus of the study was the Antarctic Circumpolar Current, currents and water properties in the Bransfield Strait and Antarctic Sound, properties of seawater, currents, ecosystem and biological communities in the Powell Basin of the northwestern Weddell Sea, and their variations. An attempt is made to reveal the role of various components of the Antarctic environment in the formation of biological productivity and maintenance of the Antarctic krill population. This is especially important as in the last decades the Antarctic environment has experienced significant changes related to the global climatic trends.
This is the proceedings of the AMS special session on nonstandard models of arithmetic and set theory held at the Joint Mathematics Meetings in Baltimore (MD). The volume opens with an essay from Haim Gaifman that probes the concept of non-standardness in mathematics and provides a fascinating mix of historical and philosophical insights into the nature of nonstandard mathematical structures. In particular, Gaifman compares and contrasts the discovery of nonstandard models with other key mathematical innovations, such as the introduction of various number systems, the modern concept of function, and non-Euclidean geometries. Other articles in the book present results related to nonstandard models in arithmetic and set theory, including a survey of known results on the Turing upper bounds of arithmetic sets and functions. The volume is suitable for graduate students and research mathematicians interested in logic, especially model theory.