You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Conceptual progress in fundamental theoretical physics is linked with the search for the suitable mathematical structures that model the physical systems. Quantum field theory (QFT) has proven to be a rich source of ideas for mathematics for a long time. However, fundamental questions such as ``What is a QFT?'' did not have satisfactory mathematical answers, especially on spaces with arbitrary topology, fundamental for the formulation of perturbative string theory. This book contains a collection of papers highlighting the mathematical foundations of QFT and its relevance to perturbative string theory as well as the deep techniques that have been emerging in the last few years. The papers are organized under three main chapters: Foundations for Quantum Field Theory, Quantization of Field Theories, and Two-Dimensional Quantum Field Theories. An introduction, written by the editors, provides an overview of the main underlying themes that bind together the papers in the volume.
This volume contains the proceedings of the scientific session “Hopf Algebras and Tensor Categories”, held from July 27–28, 2017, at the Mathematical Congress of the Americas in Montreal, Canada. Papers highlight the latest advances and research directions in the theory of tensor categories and Hopf algebras. Primary topics include classification and structure theory of tensor categories and Hopf algebras, Gelfand-Kirillov dimension theory for Nichols algebras, module categories and weak Hopf algebras, Hopf Galois extensions, graded simple algebras, and bialgebra coverings.
This book is based on talks presented at the Summer School on Interactions between Homotopy theory and Algebra held at the University of Chicago in the summer of 2004. The goal of this book is to create a resource for background and for current directions of research related to deep connections between homotopy theory and algebra, including algebraic geometry, commutative algebra, and representation theory. The articles in this book are aimed at the audience of beginning researchers with varied mathematical backgrounds and have been written with both the quality of exposition and the accessibility to novices in mind.
This volume contains articles based on talks presented at the Special Session Frames and Operator Theory in Analysis and Signal Processing, held in San Antonio, Texas, in January of 2006.
Mathematics provides a language in which to formulate the laws that govern nature. It is a language proven to be both powerful and effective. In the quest for a deeper understanding of the fundamental laws of physics, one is led to theories that are increasingly difficult to put to the test. In recent years, many novel questions have emerged in mathematical physics, particularly in quantum field theory. Indeed, several areas of mathematics have lately become increasingly influentialin physics and, in turn, have become influenced by developments in physics. Over the last two decades, interactions between mathematicians and physicists have increased enormously and have resulted in a fruitful c...
The book constitutes the refereed proceedings of the 13th EAI International Conference on Communications and Networking, held in October 2018 in Chengdu, China. The 71 papers presented were carefully selected from 114 submissions. The papers are organized in topical sections on wireless communications and networking, next generation WLAN, big data networks, cloud communications and networking, ad hoc and sensor networks, satellite and space communications and networking, optical communications and networking, information and coding theory, multimedia communications and smart networking, green communications and computing, signal processing for communications, network and information security, machine-to-machine and IoT, communication QoS, reliability and modeling, cognitive radio and networks, smart internet of things modeling, pattern recognition and image signal processing, digital audio and video signal processing, antenna and microwave communications, radar imaging and target recognition, and video coding and image signal processing.
The talks given at the Arolla Conference on Algebraic Topology covered a broad spectrum of current research in homotopy theory, offering participants the possibility to sample and relish selected morsels of homotopy theory, much as a participant in a wine tasting partakes of a variety of fine wines. True to the spirit of the conference, the proceedings included in this volume present a savory sampler of homotopical delicacies. Readers will find within these pages a compilation of articles describing current research in the area, including classical stable and unstable homotopy theory, configuration spaces, group cohomology, K-theory, localization, p-compact groups, and simplicial theory.
Contains the proceedings of the XVIII Latin American Algebra Colloquium, held from August 3-8, 2009, in Sao Paulo, Brazil. It includes research articles as well as up-to-date surveys covering several directions of current research in algebra, such as Asymptotic Codimension Growth, Hopf Algebras, Structure Theory of both Associative and Non-Associative Algebras, Partial Actions of Groups on Rings, and contributions to Coding Theory.
The book introduces readers to the heritage of St. Petersburg, sharing the geological history of a unique city, a world heritage site, and part of the UNESCO list. It also explains the role of small towns and fortresses near St. Petersburg, whose stone decoration played an essential role in the city’s evolution and was key in the history of neighboring cultures. The book also describes the main architectural symbols of St. Petersburg, such as the Alexander Column, the Bronze Horseman, the Peter and Paul Fortress and more. In addition to five guided tours of the city center, it offers descriptions of historic quarries, some of which are now open-air museums.
This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irr...