Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Algebraic Number Theory
  • Language: en
  • Pages: 583

Algebraic Number Theory

This introduction to algebraic number theory discusses the classical concepts from the viewpoint of Arakelov theory. The treatment of class theory is particularly rich in illustrating complements, offering hints for further study, and providing concrete examples. It is the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available.

Algebraic Number Theory
  • Language: en
  • Pages: 314

Algebraic Number Theory

Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis). Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract techniques constitute the primary focus. Topics include introductory materials on elementary valuation theory, extension of valuations, local and ordinary arithmetic fields, and global, quadratic, and cyclotomic fields. Subjects correspond to those usually covered in a one-semester, graduate level course in algebraic number theory, making this book ideal either for classroom use or as a stimulating series of exercises for mathematically minded individuals.

Algebraic Number Theory
  • Language: en
  • Pages: 280

Algebraic Number Theory

From the reviews of the first printing, published as Volume 62 of the Encyclopaedia of Mathematical Sciences: "... The author succeeded in an excellent way to describe the various points of view under which Class Field Theory can be seen. ... In any case the author succeeded to write a very readable book on these difficult themes." Monatshefte fuer Mathematik, 1994 "... Koch's book is written mostly for non-specialists. It is an up-to-date account of the subject dealing with mostly general questions. Special results appear only as illustrating examples for the general features of the theory. It is supposed that the reader has good general background in the fields of modern (abstract) algebra and elementary number theory. We recommend this volume mainly to graduate studens and research mathematicians." Acta Scientiarum Mathematicarum, 1993

Elementary and Analytic Theory of Algebraic Numbers
  • Language: en
  • Pages: 712

Elementary and Analytic Theory of Algebraic Numbers

This book details the classical part of the theory of algebraic number theory, excluding class-field theory and its consequences. Coverage includes: ideal theory in rings of algebraic integers, p-adic fields and their finite extensions, ideles and adeles, zeta-functions, distribution of prime ideals, Abelian fields, the class-number of quadratic fields, and factorization problems. The book also features exercises and a list of open problems.

Algebraic Number Theory
  • Language: en
  • Pages: 349

Algebraic Number Theory

The present book gives an exposition of the classical basic algebraic and analytic number theory and supersedes my Algebraic Numbers, including much more material, e. g. the class field theory on which I make further comments at the appropriate place later. For different points of view, the reader is encouraged to read the collec tion of papers from the Brighton Symposium (edited by Cassels-Frohlich), the Artin-Tate notes on class field theory, Weil's book on Basic Number Theory, Borevich-Shafarevich's Number Theory, and also older books like those of Weber, Hasse, Hecke, and Hilbert's Zahlbericht. It seems that over the years, everything that has been done has proved useful, theo retically ...

Problems in Algebraic Number Theory
  • Language: en
  • Pages: 354

Problems in Algebraic Number Theory

The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved

Number Theory
  • Language: en
  • Pages: 390

Number Theory

Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand...

Algebraic Number Theory
  • Language: en
  • Pages: 417

Algebraic Number Theory

ALGEBRAIC NUMBER THEORY provides concisely both the fundamental and profound theory, starting from the succinct ideal theory (Chapters 1-3), turning then to valuation theory and local completion field (Chapters 4-5) which is the base of modern approach. After specific discussions on class numbers, units, quadratic and cyclotomic fields, and analytical theory (Chapters 6-8), the important Class Field Theory (Chapter 9) is expounded, and algebraic function field (Chapter 10) is sketched. This book is based on the study and lectures of the author at several universities.

Algebraic Number Theory and Fermat's Last Theorem
  • Language: en
  • Pages: 334

Algebraic Number Theory and Fermat's Last Theorem

  • Type: Book
  • -
  • Published: 2001-12-12
  • -
  • Publisher: CRC Press

First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it

Algebraic Number Fields
  • Language: en
  • Pages: 292

Algebraic Number Fields

The book is directed toward students with a minimal background who want to learn class field theory for number fields. The only prerequisite for reading it is some elementary Galois theory. The first three chapters lay out the necessary background in number fields, such as the arithmetic of fields, Dedekind domains, and valuations. The next two chapters discuss class field theory for number fields. The concluding chapter serves as an illustration of the concepts introduced in previous chapters. In particular, some interesting calculations with quadratic fields show the use of the norm residue symbol. For the second edition the author added some new material, expanded many proofs, and correct...