You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Presenting a complementary perspective to standard books on algorithms, A Guide to Algorithm Design: Paradigms, Methods, and Complexity Analysis provides a roadmap for readers to determine the difficulty of an algorithmic problem by finding an optimal solution or proving complexity results. It gives a practical treatment of algorithmic complexity and guides readers in solving algorithmic problems. Divided into three parts, the book offers a comprehensive set of problems with solutions as well as in-depth case studies that demonstrate how to assess the complexity of a new problem. Part I helps readers understand the main design principles and design efficient algorithms. Part II covers polyno...
This book introduces the essential concepts of algorithm analysis required by core undergraduate and graduate computer science courses, in addition to providing a review of the fundamental mathematical notions necessary to understand these concepts. Features: includes numerous fully-worked examples and step-by-step proofs, assuming no strong mathematical background; describes the foundation of the analysis of algorithms theory in terms of the big-Oh, Omega, and Theta notations; examines recurrence relations; discusses the concepts of basic operation, traditional loop counting, and best case and worst case complexities; reviews various algorithms of a probabilistic nature, and uses elements of probability theory to compute the average complexity of algorithms such as Quicksort; introduces a variety of classical finite graph algorithms, together with an analysis of their complexity; provides an appendix on probability theory, reviewing the major definitions and theorems used in the book.
Reflects recent developments in its emphasis on randomized and approximation algorithms and communication models All topics are considered from an algorithmic point of view stressing the implications for algorithm design
This book is an introductory textbook on the design and analysis of algorithms. The author uses a careful selection of a few topics to illustrate the tools for algorithm analysis. Recursive algorithms are illustrated by Quicksort, FFT, fast matrix multiplications, and others. Algorithms associated with the network flow problem are fundamental in many areas of graph connectivity, matching theory, etc. Algorithms in number theory are discussed with some applications to public key encryption. This second edition will differ from the present edition mainly in that solutions to most of the exercises will be included.
Introduces exciting new methods for assessing algorithms for problems ranging from clustering to linear programming to neural networks.
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.
Despite growing interest, basic information on methods and models for mathematically analyzing algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary techniques and results in the field. Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for predicting algorithm perform...
For a long time computer scientists have distinguished between fast and slow algo rithms. Fast (or good) algorithms are the algorithms that run in polynomial time, which means that the number of steps required for the algorithm to solve a problem is bounded by some polynomial in the length of the input. All other algorithms are slow (or bad). The running time of slow algorithms is usually exponential. This book is about bad algorithms. There are several reasons why we are interested in exponential time algorithms. Most of us believe that there are many natural problems which cannot be solved by polynomial time algorithms. The most famous and oldest family of hard problems is the family of NP...
These are my lecture notes from CS681: Design and Analysis of Algo rithms, a one-semester graduate course I taught at Cornell for three consec utive fall semesters from '88 to '90. The course serves a dual purpose: to cover core material in algorithms for graduate students in computer science preparing for their PhD qualifying exams, and to introduce theory students to some advanced topics in the design and analysis of algorithms. The material is thus a mixture of core and advanced topics. At first I meant these notes to supplement and not supplant a textbook, but over the three years they gradually took on a life of their own. In addition to the notes, I depended heavily on the texts • A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms. Addison-Wesley, 1975. • M. R. Garey and D. S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness. w. H. Freeman, 1979. • R. E. Tarjan, Data Structures and Network Algorithms. SIAM Regional Conference Series in Applied Mathematics 44, 1983. and still recommend them as excellent references.
One of the main problems in chip design is the enormous number of possible combinations of individual chip elements within a system, and the problem of their compatibility. The recent application of data structures, efficient algorithms, and ordered binary decision diagrams (OBDDs) has proven vital in designing the computer chips of tomorrow. This book provides an introduction to the foundations of this interdisciplinary research area, emphasizing its applications in computer aided circuit design.