You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This title discusses various effects of heavy metal exposure to legumes as well as the bioremediation potential of rhizosphere microbes. Availability of heavy metals, their uptake and the effects of metals on various signaling pathways within legumes are presented. Furthermore, the effects of heavy metals to nitrogen fixing microorganisms and how microsymbionts can overcome metal stress is presented in detail. The role of nitrogen fixers in decontamination of heavy metal toxicity, mycoremediation of metal contaminated soils, microbially mediated transformation of heavy metals and action of plant growth promoting rhizobacteria and nitrogen fixers together in detoxifying heavy metals are broadly explained. This volume is a useful tool for scientists, policy makers and progressive legume growers intending to develop safe and healthy legumes for future generations.
This book provides a comprehensive information on basic and applied concepts of microbesial strategies adopted for the improvement of vegetables grown in various production systems. The beneficial role of soil microbes including plant growth promoting rhizobacteria (PGPR), nitrogen fixers, and phosphate-solubilizing bacteria in the improvement of vegetables grown both in normal and contaminated soils is discussed. The role of PGPR in tomato production is dealt separately. The impact of heavy metals on different vegetables and abatement of metal toxicity following metal tolerant PGPR and their consequential impact on vegetables grown in metal polluted soil is discussed. Moreover, recent advances in the management of vegetable diseases employing PGPR are addressed. This volume is therefore of special interest to both academics, professionals and practitioners working in the field of vegetable farming/horticulture, microbiology and plant protection sciences.
This book provides a comprehensive description of phosphate solubilizing microorganisms and highlights methods for the use of microphos in different crop production systems. The focus is on understanding both the basic and applied aspects of phosphate solubilizing microorganisms and how phosphorus-deficient soils can be transformed into phosphorus-rich ones by applying phosphate solubilizing microorganisms. The interaction of rhizosphere phosphate solubilizing microorganisms and environmental variables, as well as their importance in the production of crops such as legumes, cereals, vegetables etc. are discussed and considered. The use of cold-tolerant phosphate solubilizing microorganisms t...
Heavy-metal contamination is one of the world's major environmental problems, posing significant risks to agro-ecosystems. Conventional technologies employed for heavy-metal remediation have often been expensive and disruptive. This book provides comprehensive, state-of-the-art coverage of the natural, sustainable alternatives that use a wide range of biological materials in the removal/detoxification of heavy metals, consequently leading to the improvement of crops in these soils. Novel, environmentally friendly and inexpensive solutions are presented based on a sound understanding of metal contamination and the roles of plants and microbes in the management of these toxic soils. Written by worldwide experts, the book provides not only the necessary scientific background but also addresses the challenging questions that require special attention in order to better understand metal toxicity in soils and its management through bioremediation.
Microbes for Legume Improvement comprises 21 chapters and provides comprehensive information on concepts of microbial technology for the improvement of legumes grown in different agro-ecosystems. The role of microbes including symbiotic nitrogen fixers, asymbiotic nitrogen fixing bacteria (like Azospirillum), plant growth promoting rhizobacteria (PGPR), phosphate-solubilizing microbes, arbuscular mycorrhizal fungi and biocontrol agents in the improvement of both conventional and forage legumes growth is discussed. The role of bacterial biofilms in legume-Rhizobium interactions and metal tolerant microbes in the improvement of legumes is dealt separately. Furthermore, recent findings on the t...
This book presents in-depth insights into strategies involving plant growth-promoting rhizobacteria (PGPR), including symbiotic/asymbiotic nitrogen fixers and associative/endophyte bacteria, phosphate-solubilizing microbes, as well as arbuscular mycorrhizal fungi and their active biomolecules in legume production. It also examines the latest research findings on the taxonomic status of rhizobia and signal molecules affecting rhizobia-legume symbiosis to improve readers’ understanding of the cultivation of legumes in conventional and derelict soil. The agronomically important microflora broadly discussed have offered solutions to some of the problems associated with expensive fertilizers used in many production systems. This second edition provides an overview of metal toxicity to legumes and presents strategies for the abatement of metal toxicity to legumes. Aimed at professionals, practitioners, researchers and graduate students in microbiology, crop sciences, soil microbiology, biotechnology and environmental microbiology, the book focuses on the basic concepts and practical aspects of useful soil microbiota in legume production.
With an ever-increasing human population, the demand placed upon the agriculture sector to supply more food is one of the greatest challenges for the agrarian community. In order to meet this challenge, environmentally unfriendly agroch- icals have played a key role in the green revolution and are even today commonly recommended to circumvent nutrient de?ciencies of the soils. The use of ag- chemicals is, though, a major factor for improvement of plant production; it causes a profound deteriorating effect on soil health (soil fertility) and in turn negatively affects the productivity and sustainability of crops. Concern over disturbance to the microbial diversity and consequently soil fertil...
A guide to the diversity of pesticides used in modern agricultural practices, and the relevant social and environmental issues Pesticides in Crop Production offers an important resource that explores pesticide action in plants; pesticide metabolism in soil microbes, plants and animals; bioaccumulation of pesticides and sensitiveness of microbiome towards pesticides. The authors explore pesticide risk assessment, the development of pesticide resistance in pests, microbial remediation of pesticide intoxicated legumes and pesticide toxicity amelioration in plants by plant hormones. The authors include information on eco-friendly pest management. They review the impact of pesticides on soil micr...
The alkaline calcareous nature, high pH, salinity, heavy metals pollution, and low organic matter content of soils in many parts of the world have diminished the soil fertility and made essential nutrients unavailable to crops. To cope with the poor availability of soil nutrients, improve soil health, and feed the fast-growing global population, the farming community is using millions of tons of expensive chemical fertilizers in their fields to maintain an adequate level of nutrients for crop sustainability as well as to ensure food security. In this scenario, the exploitation of biofertilizers has become of paramount importance in the agricultural sector for their potential role in food saf...
This book encompasses current knowledge of soil microbiomes and their potential biotechnological application for plant growth, crop yield, and soil health under the natural as well as harsh environmental conditions for sustainable agriculture. The microbes are ubiquitous in nature. The soil is a natural hotspot of the soil microbiome. The soil microbiome plays a critical role in the maintenance of global nutrient balance and ecosystem functioning. The soil microbiomes are associated with plant ecosystems through the intense network of plant–microbe interactions. The microbes present in bulk soil move toward the rhizospheric region due to the release of different nutrients by plant systems....