You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book offers readers an easy introduction into quantum computing as well as into the design for corresponding devices. The authors cover several design tasks which are important for quantum computing and introduce corresponding solutions. A special feature of the book is that those tasks and solutions are explicitly discussed from a design automation perspective, i.e., utilizing clever algorithms and data structures which have been developed by the design automation community for conventional logic (i.e., for electronic devices and systems) and are now applied for this new technology. By this, relevant design tasks can be conducted in a much more efficient fashion than before – leading...
This book provides an easy-to-read introduction into quantum computing as well as classical simulation of quantum circuits. The authors showcase the enormous potential that can be unleashed when doing these simulations using decision diagrams—a data structure common in the design automation community but hardly used in quantum computing yet. In fact, the covered algorithms and methods are able to outperform previously proposed solutions on certain use cases and, hence, provide a complementary solution to established approaches. The award-winning methods are implemented and available as open-source under free licenses and can be easily integrated into existing frameworks such as IBM’s Qiskit or Atos’ QLM.
This book discusses modern approaches and challenges of computer-aided design (CAD) of quantum circuits with a view to providing compact representations of quantum functionality. Focusing on the issue of quantum functionality, it presents Quantum Multiple-Valued Decision Diagrams (QMDDs – a means of compactly and efficiently representing and manipulating quantum logic. For future quantum computers, going well beyond the size of present-day prototypes, the manual design of quantum circuits that realize a given (quantum) functionality on these devices is no longer an option. In order to keep up with the technological advances, methods need to be provided which, similar to the design and synt...
This book constitutes the refereed proceedings of the 10th International Conference on Reversible Computation, RC 2018, held in Leicester, UK, in September 2018. The 13 full, 7 short, and one tutorial papers included in this volume together with four invited talks were carefully reviewed and selected from 28 submissions. The papers are organized in the following topical sections: reversible concurrent computation; quantum circuits; reversible programming languages; and applications.
This book provides readers with the current state-of-the-art research and technology on quantum computing. The authors provide design paradigms of quantum computing. Topics covered include multi-programming mechanisms on near-term quantum computing, Lagrange interpolation approach for the general parameter-shift rule, architecture-aware decomposition of quantum circuits, software for massively parallel quantum computing, machine learning in quantum annealing processors, quantum annealing for real-world machine learning applications, queuing theory models for (Fault-Tolerant) quantum circuits, machine learning for quantum circuit reliability assessment, and side-channel leakage in Suzuki stack circuits.
The book covers a range of topics dealing with emerging computing technologies which are being developed in response to challenges faced due to scaling CMOS technologies. It provides a sneak peek into the capabilities unleashed by these technologies across the complete system stack, with contributions by experts discussing device technology, circuit, architecture and design automation flows. Presenting a gradual progression of the individual sub-domains and the open research and adoption challenges, this book will be of interest to industry and academic researchers, technocrats and policymakers. Chapters "Innovative Memory Architectures Using Functionality Enhanced Devices" and "Intelligent Edge Biomedical Sensors in the Internet of Things (IoT) Era" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book provides readers with a comprehensive, state-of-the-art reference to the design automation aspects of quantum computers. Given roadmaps calling for quantum computers with 2000 qubits in a few years, readers will benefit from the practical implementation aspects covered in this book. The authors discuss real hardware to the extent possible. Provides an up-to-date, single-source reference to design automation aspects of quantum computers; Presentation is not just theoretical, but substantiated with real quantum hardware; Covers multi-faceted aspects of quantum computers, providing readers with valuable information, no matter the direction in which technology moves.
This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first.
This book constitutes the refereed proceedings of the 9th International Conference on Reversible Computation, RC 2017, held in Kolkata, India, in July 2017. The 13 full and 5 short papers included in this volume together with one invited paper were carefully reviewed and selected from 47 submissions. The papers are organized in the following topical sections: foundations; reversible circuit synthesis; reversible circuit optimization; testing and fault tolerance; and quantum circuits.
This book constitutes the refereed proceedings of the 11th International Conference on Reversible Computation, RC 2019, held in Lausanne, Switzerland, in June 2019. The 12 full papers and two short papers included in this volume were carefully reviewed and selected from 22 submissions. One invited talk is also included. The papers are organized in the following topical sections: theory and foundation; programming languages; circuit synthesis; evaluation of circuit synthesis; and applications and implementations.