You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Crop plants are constantly exposed to multiple abiotic (such as drought, salinity, cold, flooding, heavy metal, and heat) and/or biotic (bacterial/fungal/viral) stress factors that hinder their growth and development, subsequently leading to decreases in quality and yield. During the last two decades, many classical genetic and breeding approaches have been used to develop stress-tolerant and climate-adaptable plants that can provide a better yield to meet food demands. Climate change poses a major risk to food security as the world faces frequent floods, droughts, heat waves, and the emergence of new invasive pests and diseases. Novel genomic and genetic approaches look promising to improve...
Research data is expensive and precious, yet it is seldom fully utilized due to our ability of comprehension. Graphical display is desirable, if not absolutely necessary, for fully understanding large data sets with complex interconnectedness and interactions. The newly developed GGE biplot methodology is a superior approach to the graphical analys
Weeds are the main biological constraint to crop production throughout the year. Uncontrolled weeds could cause 100% yield loss. In Australia, the overall cost of weeds to Australian grain growers was estimated at AU$ 3.3 billion annually. In terms of yield losses, weeds amounted to 2.7 million tonnes of grains at a national level. In the USA, weeds cost US$ 33 billion in lost crop production annually. In India, these costs were estimated to be much higher (US$ 11 billion). These studies from different economies suggest that weeds cause substantial yield and economic loss. Biology and Management of Problematic Weed Species details the biology of key weed species, providing vital information ...
The late 1980s saw an explosion in the amount and diversity of herbicide resistance, posing a threat to crop production in many countries. The rapid escalation in herbicide resistance worldwide and in the understanding of resistance at the population, biochemical, and molecular level is the focus of this timely book. Leading researchers from North America, Australia, and Western Europe present lucid reviews that consider the population dynamics and genetics, biochemistry, and agro-ecology of resistance. Resistance to various herbicides is discussed in detail, as well as the mechanisms responsible for cross resistance and multiple resistance. This reference is invaluable to those interested in evolution and the ability of species to overcome severe environmental stress.
Environmental stresses represent the most limiting factors for agricultural productivity. Apart from biotic stress caused by plant pathogens, there are a number of abiotic stresses such as extremes in temperature, drought, salinity, heavy metals and radiation which all have detrimental effects on plant growth and yield. However, certain plant species and ecotypes have developed various mechanisms to adapt to such stress conditions. Recent advances in the understanding of these abiotic stress responses provided the impetus for compiling up-to-date reviews discussing all relevant topics in abiotic stress signaling of plants in a single volume. Topical reviews were prepared by selected experts and contain an introduction, discussion of the state of the art and important future tasks of the particular fields.
Silicon (Si) is gaining increased attention in the farming sector because of its beneficial effects observed in several crop species, particularly under stress conditions. The magnitude of benefits is predominantly observed in plant species that can accumulate Si above a certain threshold. Therefore, deciphering the molecular mechanisms and genetic factors conferring a plant ability to take up silicon is necessary. Along these lines, several efforts have been made to identify the specific genes regulating Si uptake and distribution in plant tissues. This information finds its usefulness in identifying Si-competent species, and could eventually lead to improving this ability in low-accumulati...
Aquaporins (AQPs), a class of integral membrane proteins, form channels facilitating movement of water and many other solutes. In solute transport systems of all living organisms including plants, animals and fungi, AQPs play a vital role. Plants contain a much higher number of AQP genes compared to animals, the likely consequence of genome duplication events and higher ploidy levels. As a result of duplication and subsequent diversification, plant AQPs have evolved several subfamilies with very diverse functions. Plant AQPs are highly selective for specific solutes because of their unique structural features. For instance, ar/R selectivity filters and NPA domains have been found to be key e...