You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a translation from Russian of Part III of the book Mathematics via Problems: From Olympiads and Math Circles to Profession. Part I, Algebra, and Part II, Geometry, have been published in the same series. The main goal of this book is to develop important parts of mathematics through problems. The authors tried to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover such topics in combinatorics as counting, graphs, constructions and invariants in combinatorics, games and algorithms, probabilistic aspects of combinatorics, and combinatorial geometry. Definitions and/or references for material t...
Moscow has a rich tradition of successful math circles, to the extent that many other circles are modeled on them. This book presents materials used during the course of one year in a math circle organized by mathematics faculty at Moscow State University, and also used at the mathematics magnet school known as Moscow School Number 57. Each problem set has a similar structure: it combines review material with a new topic, offering problems in a range of difficulty levels. This time-tested pattern has proved its effectiveness in engaging all students and helping them master new material while building on earlier knowledge. The introduction describes in detail how the math circles at Moscow St...
In the American Mathematical Society's first-ever book for kids (and kids at heart), mathematician and author Richard Evan Schwartz leads math lovers of all ages on an innovative and strikingly illustrated journey through the infinite number system. By means of engaging, imaginative visuals and endearing narration, Schwartz manages the monumental task of presenting the complex concept of Big Numbers in fresh and relatable ways. The book begins with small, easily observable numbers before building up to truly gigantic ones, like a nonillion, a tredecillion, a googol, and even ones too huge for names! Any person, regardless of age, can benefit from reading this book. Readers will find themselves returning to its pages for a very long time, perpetually learning from and growing with the narrative as their knowledge deepens. Really Big Numbers is a wonderful enrichment for any math education program and is enthusiastically recommended to every teacher, parent and grandparent, student, child, or other individual interested in exploring the vast universe of numbers.
Early middle school is a great time for children to start their mathematical circle education. This time is a period of curiosity and openness to learning. The thinking habits and study skills acquired by children at this age stay with them for a lifetime. Mathematical circles, with their question-driven approach and emphasis on creative problem-solving, have been rapidly gaining popularity in the United States. The circles expose children to the type of mathematics that stimulates development of logical thinking, creativity, analytical abilities and mathematical reasoning. These skills, while scarcely touched upon at school, are in high demand in the modern world. This book contains everyth...
This volume contains the proceedings of the summer school and research conference “Frontiers in Geometry and Topology”, celebrating the sixtieth birthday of Tomasz Mrowka, which was held from August 1–12, 2022, at the Abdus Salam International Centre for Theoretical Physics (ICTP). The summer school featured ten lecturers and the research conference featured twenty-three speakers covering a range of topics. A common thread, reflecting Mrowka's own work, was the rich interplay among the fields of analysis, geometry, and topology. Articles in this volume cover topics including knot theory; the topology of three and four-dimensional manifolds; instanton, monopole, and Heegaard Floer homologies; Khovanov homology; and pseudoholomorphic curve theory.
Are you a mathematics major or thinking about becoming one? This friendly guidebook is for you, no matter where you are in your studies. For those just starting out, there are: interactive exercises to help you chart your personalized course, brief overviews of the typical courses you will encounter during your studies, recommended extracurricular activities that can enrich your mathematical journey. Mathematics majors looking for effective ways to support their success will discover: practical examples of dealing with setbacks and challenges in mathematics, a primer on study skills, including particular advice like how to effectively read mathematical literature and learn mathematically focused programming. Students thinking about life after graduation will find: advice for seeking jobs outside academia, guidance for applying to graduate programs, a collection of interviews with former mathematics majors now working in a wide variety of careers—they share their experience and practical advice for breaking into their field. Packed with a wealth of information, Navigating the Math Major is your comprehensive resource to the undergraduate mathematics degree program.
The word "critical" in the title of this collection has three meanings, all of which are relevant. One meaning, as applied to a situation or problem, is "at a point of crisis". A second meaning is "expressing adverse or disapproving comments or judgments". A third is related to the verb "to critique", meaning "to analyze the merits and faults of". The authors contributing to this book pose challenging questions, from multiple perspectives, about the roles of mathematics in society and the implications for education. Traditional reasons for teaching mathematics include: preparing a new generation of mathematics researchers and a cadre of technically competent users of mathematics; training st...
This volume collects contributions from speakers at the INdAM Workshop “Birational Geometry and Moduli Spaces”, which was held in Rome on 11–15 June 2018. The workshop was devoted to the interplay between birational geometry and moduli spaces and the contributions of the volume reflect the same idea, focusing on both these areas and their interaction. In particular, the book includes both surveys and original papers on irreducible holomorphic symplectic manifolds, Severi varieties, degenerations of Calabi-Yau varieties, uniruled threefolds, toric Fano threefolds, mirror symmetry, canonical bundle formula, the Lefschetz principle, birational transformations, and deformations of diagrams of algebras. The intention is to disseminate the knowledge of advanced results and key techniques used to solve open problems. The book is intended for all advanced graduate students and researchers interested in the new research frontiers of birational geometry and moduli spaces.
Gallery of the Infinite is a mathematician's unique view of the infinitely many sizes of infinity. Written in a playful yet informative style, it introduces important concepts from set theory (including the Cantor Diagonalization Method and the Cantor-Bernstein Theorem) using colorful pictures, with little text and almost no formulas. It requires no specialized background and is suitable for anyone with an interest in the infinite, from advanced middle-school students to inquisitive adults.