You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the Calabi-Yau case. The book concludes with the first "naive" Givental computation, which is a mysterious mathematical justification of the computation of Candelas, et al.
The correspondence between Einstein metrics and their conformal boundaries has recently been the focus of great interest. This is particularly so in view of the relation with the physical theory of the AdS/CFT correspondence. In this book, this correspondence is seen in the wider context of asymptotically symmetric Einstein metrics, that is Einstein metrics whose curvature is asymptotic to that of a rank one symmetric space. There is an emphasis on the correspondence betweenEinstein metrics and geometric structures on their boundary at infinity: conformal structures, CR structures, and quaternionic contact structures introduced and studied in the book. Two new constructions of such Einstein metrics are given, using two different kinds of techniques: analytic methods toconstruct complete Einstein metrics, with a unified treatment of all rank one symmetric spaces, relying on harmonic analysis; algebraic methods (twistor theory) to construct local solutions of the Einstein equation near the boundary.
The book is a bilingual (French and English) edition of the mathematical correspondence between A. Grothendieck and J-P. Serre. The original French text of 84 letters is supplemented here by the English translation, with French text printed on the left-hand pages and the corresponding English text printed on the right-hand pages. The book also includes several facsimiles of original letters. The letters presented in the book were mainly written between 1955 and 1965. During this period, algebraic geometry went through a remarkable transformation, and Grothendieck and Serre were among central figures in this process. The reader can follow the creation of some of the most important notions of ...
Riemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1,infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are n...
In this text, the author presents a general framework for applying the standard methods from homotopy theory to the category of smooth schemes over a reasonable base scheme $k$. He defines the homotopy category $h(\mathcal{E} k)$ of smooth $k$-schemes and shows that it plays the same role for smooth $k$-schemes as the classical homotopy category plays for differentiable varieties. It is shown that certain expected properties are satisfied, for example, concerning the algebraic$K$-theory of those schemes. In this way, advanced methods of algebraic topology become available in modern algebraic geometry.
This features contributions by and about some of the luminaries of American mathematics. Included here are essays based on presentations made during the symposium Celebration of 100 Years of Annual Meetings, held at the AMS meeting in Cincinnati in 1994. The papers in this collection form a vibrant collage of mathematical personalities. This book weaves a tapestry of mathematical life in the United States, with emphasis on the past seventy years. Photographs, old and recent, further decorate that tapestry. There are many stories to be told about the making of mathematics and the personalities of those who meet to share it. This collection offers a celebration in words and pictures of a century of American mathematical life.
This comprehensive history traces the development of mathematical ideas and the careers of the men responsible for them. Volume 1 looks at the disciplines origins in Babylon and Egypt, the creation of geometry and trigonometry by the Greeks, and the role of mathematics in the medieval and early modern periods. Volume 2 focuses on calculus, the rise of analysis in the 19th century, and the number theories of Dedekind and Dirichlet. The concluding volume covers the revival of projective geometry, the emergence of abstract algebra, the beginnings of topology, and the influence of Godel on recent mathematical study.