You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Division sponsored three symposia at the Congress, on direct thermal power conversion and thermal management; thermodynamics and the design, analysis, and improvement of energy systems; and heat-pump and refrigeration systems: design, analysis, and application. Together they generated 58 papers,
These volumes are a component of Encyclopedia of Water Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. These volumes discuss on Large-scale power production which requires the use of heat in a thermodynamic cycle to produce mechanical work, which in turn can generate electrical energy. Substantial quantities of fuel are hence required to sustain the production of heat. Fuel may be combustible, as in the case of fossil fuels such as coal and oil, or fissionable, as in the case of nuclear fuels such as uranium. All fuels produce waste products, which must be discharged, dumped, or stored. Such products range from innocuous water vapor to hazardous nuclear waste. These volumes are aimed at the following five major target audiences: University and College Students Educators, Professional Practitioners, Research Personnel and Policy and Decision Makers
Proceedings of the November 1996 congress. After a brief overview of advances in microenergy systems, a section on heat pump and refrigeration systems looks at areas such as heat pump and refrigeration cycles and working media, emerging technologies, and fluid mechanics and heat transfer in positive
This book presents the diverse and rapidly expanding field of Entropy Generation Minimization (EGM), the method of thermodynamic optimization of real devices. The underlying principles of the EGM method - also referred to as "thermodynamic optimization," "thermodynamic design," and "finite time thermodynamics" - are thoroughly discussed, and the me
Exergy, Energy System Analysis, and Optimization theme is a component of the Encyclopedia of Energy Sciences, Engineering and Technology Resources which is part of the global Encyclopedia of Life Support Systems (EOLSS), an integrated compendium of twenty one Encyclopedias. These three volumes are organized into five different topics which represent the main scientific areas of the theme: 1. Exergy and Thermodynamic Analysis; 2. Thermoeconomic Analysis; 3. Modeling, Simulation and Optimization in Energy Systems; 4. Artificial Intelligence and Expert Systems in Energy Systems Analysis; 5. Sustainability Considerations in the Modeling of Energy Systems. Fundamentals and applications of characteristic methods are presented in these volumes. These three volumes are aimed at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.
Exergy, Second Edition deals with exergy and its applications to various energy systems and applications as a potential tool for design, analysis and optimization, and its role in minimizing and/or eliminating environmental impacts and providing sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered as outlined in the contents. - Offers comprehensive coverage of exergy and its applications, along with the most up-to-date information in the area with recent developments - Connects exergy with three essential areas in terms of energy, environment and sustainable development - Provides a number of illustrative examples, practical applications, and case studies - Written in an easy-to-follow style, starting from the basics to advanced systems