You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a collection of the various old and new results, centered around the following simple and beautiful observation of J.L. Walsh - If a function is analytic in a finite disc, and not in a larger disc, then the difference between the Lagrange interpolant of the function, at the roots of unity, and the partial sums of the Taylor series, about the origin, tends to zero in a larger disc than the radius of convergence of the Taylor series, while each of these operators converges only in the original disc. This book will be particularly useful for researchers in approximation and interpolation theory.
Tauberian theory compares summability methods for series and integrals, helps to decide when there is convergence, and provides asymptotic and remainder estimates. The author shows the development of the theory from the beginning and his expert commentary evokes the excitement surrounding the early results. He shows the fascination of the difficult Hardy-Littlewood theorems and of an unexpected simple proof, and extolls Wiener's breakthrough based on Fourier theory. There are the spectacular "high-indices" theorems and Karamata's "regular variation", which permeates probability theory. The author presents Gelfand's elegant algebraic treatment of Wiener theory and his own distributional approach. There is also a new unified theory for Borel and "circle" methods. The text describes many Tauberian ways to the prime number theorem. A large bibliography and a substantial index round out the book.
This book contains the proceedings of an international conference held in Cairo, Egypt (January 1994). Mathematics and engineering discoveries, such as wavelets, multiresolution analysis, and subband coding schemes, caused rapid advancements in signal processing, necessitating an interdisciplinary approach. Contributors to this conference demonstrated that some traditional areas of mathematical analysis - sampling theory, approximation theory, and orthogonal polynomials - have proven extremely useful in solving various signal processing problems.
The papers in this volume cover a wide variety of topics in the geometric theory of functions of one and several complex variables, including univalent functions, conformal and quasiconformal mappings, minimal surfaces, and dynamics in infinite-dimensional spaces. In addition, there are several articles dealing with various aspects of approximation theory and partial differential equations. Taken together, the articles collected here provide the reader with a panorama of activity in complex analysis, drawn by a number of leading figures in the field.
This volume grew out of a conference in honor of Boris Korenblum on the occasion of his 80th birthday, held in Barcelona, Spain, November 20-22, 2003. The book is of interest to researchers and graduate students working in the theory of spaces of analytic function, and, in particular, in the theory of Bergman spaces.
Includes articles that represent global aspects of automorphic forms. This book covers topics such as: the trace formula; functoriality; representations of reductive groups over local fields; the relative trace formula and periods of automorphic forms; Rankin - Selberg convolutions and L-functions; and, p-adic L-functions.
One of the most prominent mathematicians of the twentieth century, Abraham Robinson discovered and developed nonstandard analysis, a rigorous theory of infinitesimals that he used to unite mathematical logic with the larger body of historic and modern mathematics. In this first biography of Robinson, Joseph Dauben reveals the mathematician's personal life to have been a dramatic one: developing his talents in spite of war and ethnic repression, Robinson personally confronted some of the worst political troubles of our times. With the skill and expertise familiar to readers of Dauben's earlier works, the book combines an explanation of Robinson's revolutionary achievements in pure and applied...