You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This intuitive yet rigourous introduction derives the core results of digital communication from first principles. Theory, rather than industry standards, motivates the engineering approaches, and key results are stated with all the required assumptions. The book emphasizes the geometric view, opening with the inner product, the matched filter for its computation, Parseval's theorem, the sampling theorem as an orthonormal expansion, the isometry between passband signals and their baseband representation, and the spectral-efficiency optimality of quadrature amplitude modulation (QAM). Subsequent chapters address noise, hypothesis testing, Gaussian stochastic processes, and the sufficiency of the matched filter outputs. Uniquely, there is a treatment of white noise without generalized functions, and of the power spectral density without artificial random jitters and random phases in the analysis of QAM. This systematic and insightful book, with over 300 exercises, is ideal for graduate courses in digital communication, and for anyone asking 'why' and not just 'how'.
A fully updated introductory text that derives the key results of digital communication from first principles.
Channel Coding in the Presence of Side Information reviews the concepts and methods of communication systems equipped with side information both from the theoretical and practical points of view. It is a comprehensive review that gives the reader an insightful introduction to one of the most important topics in modern communications systems.
Entropy, mutual information and divergence measure the randomness, dependence and dissimilarity, respectively, of random objects. In addition to their prominent role in information theory, they have found numerous applications, among others, in probability theory statistics, physics, chemistry, molecular biology, ecology, bioinformatics, neuroscience, machine learning, linguistics, and finance. Many of these applications require a universal estimate of information measures which does not assume knowledge of the statistical properties of the observed data. Over the past few decades, several nonparametric algorithms have been proposed to estimate information measures. Universal Estimation of I...
This book constitutes the refereed proceedings of the International Conference on the Theory and Application of Cryptographic Techniques, EUROCRYPT '99, held in Prague, Czech Republic in May 1999. The 32 revised full papers presented were carefully selected during highly competitive reviewing process. The book is divided in topical sections on cryptanalysis, hash functions, foundations, public key cryptosystems, watermarking and fingerprinting, elliptic curves, new schemes, block ciphers, distributed cryptography, tools from related areas, and broadcast and multicast.
This monograph is based on lecture notes of a graduate course, which focuses on the relations between information theory and statistical physics. The course was delivered at the Technion during the Spring of 2010 for the first time, and its target audience consists of EE graduate students in the area of communications and information theory, as well as graduate students in Physics who have basic background in information theory. Strong emphasis is given to the analogy and parallelism between information theory and statistical physics, as well as to the insights, the analysis tools and techniques that can be borrowed from statistical physics and 'imported' to certain problem areas in information theory. This is a research trend that has been very active in the last few decades, and the hope is that by exposing the students to the meeting points between these two disciplines, their background and perspective may be expanded and enhanced. This monograph is substantially revised and expanded relative to an earlier version posted in arXiv (1006.1565v1 cs.iT]).
Information Combining is an introduction to the principles of information combining. The concept is described, the bounds for repetition codes and for single parity-check codes are proved, and some applications are provided. As the focus is on the basic principles, it considers a binary symmetric source, binary linear channel codes, and binary-input symmetric memoryless channels. Information Combining first introduces the concept of mutual information profiles and revisits the well-known Jensen's inequality. Using these tools, the bounds on information combining are derived for single parity-check codes and for repetition codes. The application of the bounds is illustrated in four examples. Information Combining provides an excellent tutorial on this important subject for students, researchers and rpofessonals working in communications and information theory.
Combinatorial Designs for Authentication and Secrecy Codes is a succinct in-depth review and tutorial of a subject that promises to lead to major advances in computer and communication security. This monograph provides a tutorial on combinatorial designs, which gives an overview of the theory. Furthermore, the application of combinatorial designs to authentication and secrecy codes is described in depth. This close relationship of designs with cryptography and information security was first revealed in Shannon's seminal paper on secrecy systems. We bring together in one source foundational and current contributions concerning design-theoretic constructions and characterizations of authentication and secrecy codes.
The fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements are derived in a tutorial manner. Mathematical elegance and generality are sacrificed for conceptual simplicity and insight in the hope of making these results available to engineers lacking either the background or endurance to attack the mathematical literature on the subject. By limiting the generality of the matrices considered, the essential ideas and results can be conveyed in a more intuitive manner without the mathematical machinery required for the most general cases. As an application the results are applied t...