You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book details the simulation and optimization of integer and fractional-order chaotic systems, and how they can be implemented in the analog and digital domains using FPAAs and FPGAs. Design guidelines are provided to use commercially available electronic devices, and to perform hardware descriptions of integer/fractional-order chaotic systems programming in VHDL. Finally, several engineering applications oriented to cryptography, internet of things, robotics and chaotic communications, are detailed to highlight the usefulness of FPAA/FPGA based integer/fractional-order chaotic systems. Provides guidelines to implement fractional-order derivatives using commercially available devices; Describes details on using FPAAs to approach fractional-order chaotic systems; Includes details on using FPGAs to approach fractional-order chaotic systems, programming in VHDL and reducing hardware resources; Discusses applications to cryptography, internet of things, robotics and chaotic communications.
This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized ...
This book presents select proceedings of the Virtual International Conference on Futuristic Communication and Network Technologies (VICFCNT 2021). It covers various domains in communication engineering and networking technologies. This volume comprises recent research in areas like cyber-physical systems, acoustics, speech & video signal Processing, and the Internet of Things. This book is a collated work of academicians, researchers, and industry personnel from the international arena. This book will be useful for researchers, professionals, and engineers working in the core areas of electronics and communication.
This book reports on the latest advances and applications of chaotic systems. It consists of 25 contributed chapters by experts who are specialized in the various topics addressed in this book. The chapters cover a broad range of topics of chaotic systems such as chaos, hyperchaos, jerk systems, hyperjerk systems, conservative and dissipative systems, circulant chaotic systems, multi-scroll chaotic systems, finance chaotic system, highly chaotic systems, chaos control, chaos synchronization, circuit realization and applications of chaos theory in secure communications, mobile robot, memristors, cellular neural networks, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in chaos theory. This book will serve as a reference book for graduate students and researchers with a basic knowledge of chaos theory and control systems. The resulting design procedures on the chaotic systems are emphasized using MATLAB software.
Applications of Fractional Calculus to Modeling in Dynamics and Chaos aims to present novel developments, trends, and applications of fractional-order derivatives with power law and Mittag-Leffler kernel in the areas of chemistry, mechanics, chaos, epidemiology, fluid mechanics, modeling, and engineering. Non-singular and non-local fractional-order derivatives have been applied in different chapters to describe complex problems. The book offers theory and practical applications for the solutions of real-life problems and will be of interest to graduate-level students, educators, researchers, and scientists interested in mathematical modeling and its diverse applications. Features Discusses real-world problems, theory, and applications Covers new developments and advances in the various areas of nonlinear dynamics, signal processing, and chaos Suitable to teach master’s and/or PhD-level graduate students, and can be used by researchers, from any field of the social, health, and physical sciences
Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications illustrates recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) and their applications in nonlinear dynamical systems, computer science, analog and digital systems, and in neuromorphic circuits and artificial intelligence. The book is mainly devoted to recent results, critical aspects and perspectives of ongoing research on relevant topics, all involving networks of mem-elements devices in diverse applications. Sections contribute to the discussion of memristive materials and transport mechanisms, presenting various types of physical structures that can be fabricated to realize me...
Since the birth of the Chua circuit in 1983, a considerable number of fruitful, fascinating and relevant research topics have arisen. In honor of the 25th anniversary of the invention of Chua's circuit, this book presents the 25 years of research on the implementation of Chua's circuit, and also discusses future directions and emerging applications of recent results.The purpose of the book is to provide researchers, PhD students, and undergraduate students a research monograph containing both fundamentals on the topics and advanced results that have been recently obtained. With about 60 illustrations included in the book, it also shows the detailed schematics of several different implementations that can be easily reproduced with a low-cost experimental setup and PC-based measurement instrumentation.
In this volume, leading researchers bring together current work on time perception and time-based prospective memory in order to understand how people time their intentions. This is the first account of many important topics concerning the timing of behavior, offered by scientists of diverse fields who in the past have exhibited an attitude of mutual 'benign neglect'. An explication of the rules which govern timing the future are of fundamental interest to anyone who wishes to explore the potential of human experience.Prospective memory — especially time-based — is a relatively unexplored way to study memory and few studies have been devoted to its neurobiological foundations. This volume aims to fill this void and will boost further interest in the field, while stimulating interdisciplinary research.
In recent years, the banking industry has faced significant challenges due to deregulation, globalization, financial innovation, and intensified global competition. In response to these challenges, banks have adopted strategies to grow and expand their activities, with mergers and acquisitions (M&As) being one of the most popular over the last decade. This unique book thus discusses the use of quantitative classification methods for the prediction of bank acquisitions. With an overview of the M&A trends in the EU banking industry and a survey of the motives for M&As, the authors compare various statistical and computational methodologies used to analyze and predict bank acquisitions. The material constitutes a useful basis for researchers and practitioners in banking management to develop and analyze investment decisions related to M&As.
This book describes the design and realization of analog fractional-order circuits, which are suitable for on-chip implementation, capable of low-voltage operation and electronic adjustment of their characteristics. The authors provide a brief introduction to fractional-order calculus, followed by design issues for fractional-order circuits of various orders and types. The benefits of this approach are demonstrated with current-mode and voltage-mode filter designs. Electronically tunable emulators of fractional-order capacitors and inductors are presented, where the behavior of the corresponding chips fabricated using the AMS 0.35um CMOS process has been experimentally verified. Applications of fractional-order circuits are demonstrated, including a pre-processing stage suitable for the implementation of the Pan-Tompkins algorithm for detecting the QRS complexes of an electrocardiogram (ECG), a fully tunable implementation of the Cole-Cole model used for the modeling of biological tissues, and a simple, non-impedance based measuring technique for super-capacitors.