You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In statistics, analysis of variance (ANOVA) is a collection of statistical models used to distinguish between an observed variance in a particular variable and its component parts. In its simplest form, ANOVA provides a statistical test of whether or not the means of several groups are all equal, and therefore generalizes a test between these groups. One test often used by statisticians and researchers in their work is the Two-Way ANOVA, which determines the differences--and possible interactions--when variables are presented from the perspective of two or more categories. When a Two-Way ANOVA is implemented, it enables one to compare and contrast variables resulting from independent or joint actions. This brief provides guidance on how R can be used to facilitate Two-Way ANOVA for data analysis and graphical presentation. Along with instruction on the use of R and R syntax associated with Two-Way ANOVA, this brief will also reinforce the use of descriptive statistics and graphical figures to complement outcomes from parametric Two-Way ANOVA.
The analysis of variance (ANOYA) models have become one of the most widely used tools of modern statistics for analyzing multifactor data. The ANOYA models provide versatile statistical tools for studying the relationship between a dependent variable and one or more independent variables. The ANOYA mod els are employed to determine whether different variables interact and which factors or factor combinations are most important. They are appealing because they provide a conceptually simple technique for investigating statistical rela tionships among different independent variables known as factors. Currently there are several texts and monographs available on the sub ject. However, some of them such as those of Scheffe (1959) and Fisher and McDonald (1978), are written for mathematically advanced readers, requiring a good background in calculus, matrix algebra, and statistical theory; whereas others such as Guenther (1964), Huitson (1971), and Dunn and Clark (1987), although they assume only a background in elementary algebra and statistics, treat the subject somewhat scantily and provide only a superficial discussion of the random and mixed effects analysis of variance.
Analysis of variance (ANOVA) is a core technique for analysing data in the Life Sciences. This reference book bridges the gap between statistical theory and practical data analysis by presenting a comprehensive set of tables for all standard models of analysis of variance and covariance with up to three treatment factors. The book will serve as a tool to help post-graduates and professionals define their hypotheses, design appropriate experiments, translate them into a statistical model, validate the output from statistics packages and verify results. The systematic layout makes it easy for readers to identify which types of model best fit the themes they are investigating, and to evaluate the strengths and weaknesses of alternative experimental designs. In addition, a concise introduction to the principles of analysis of variance and covariance is provided, alongside worked examples illustrating issues and decisions faced by analysts.
In the investigation of human behaviour, statistical techniques are employed widely in the social sciences. Whilst introductory statistics courses cover essential techniques, the complexities of behaviour demand that more flexible and comprehensive methods are also employed. Analysis of Variance (ANOVA) has become one of the most common of these and it is therefore essential for both student and researcher to have a thorough understanding of it. A Student's Guide to Analysis of Variance covers a range of statistical techniques associated with ANOVA, including single and multiple factor designs, various follow-up procedures such as post-hoc tests, and how to make sense of interactions. Suggestions on the best use of techniques and advice on how to avoid the pitfalls are included, along with guidelines on the writing of formal reports. Introductory level topics such as standard deviation, standard error and t-tests are revised, making this book an invaluable aid to all students for whom ANOVA is a compulsory topic. It will also serve as a useful refresher for the more advanced student and practising researcher.
As an introductory textbook on the analysis of variance or a reference for the researcher, this text stresses applications rather than theory, but gives enough theory to enable the reader to apply the methods intelligently rather than mechanically. Comprehensive, and covering the important techniques in the field, including new methods of post hoc testing. The relationships between different research designs are emphasized, and these relationships are exploited to develop general principles which are generalized to the analyses of a large number of seemingly differentdesigns. Primarily for graduate students in any field where statistics are used.
Bray's monograph considers the multivariate form of analysis of variance (MANOVA). It is a technique which can be used in such different academic disciplines as psychology, sociology, biology, and education.
img border="0" src="IMAGES/companionwebsite.jpg" alt="A companion website is available for this text" width="75" height="20" Analysis of variance (ANOVA) constitutes the main set of statistical methods used by students and researchers to analyse data from experiments. This expertly written textbook adopts a pioneering approach to ANOVA with an emphasis on confidence intervals rather than tests of significance. Key features of the book include: · Extensive coverage · Strong emphasis upon practical examples · Web-based links to sample questions and answers Student-focused throughout, it offers a comprehensive introduction to ANOVA using confidence intervals. The chapters have been organized to fit onto a typical lecture programme and is well-structured and practical, invaluable for undergraduates and postgraduate students taking courses in quantitative methods across the social sciences.
Accompanying CD-ROM contains ... "all of the book's data sets as well as exercises for each chapter."--Page 4 of cover.
Originally published in 1959, this classic volume has had a major impact on generations of statisticians. Newly issued in the Wiley Classics Series, the book examines the basic theory of analysis of variance by considering several different mathematical models. Part I looks at the theory of fixed-effects models with independent observations of equal variance, while Part II begins to explore the analysis of variance in the case of other models.
Introducing a revolutionary new model for the statistical analysis of experimental data In this important book, internationally acclaimed statistician, Chihiro Hirotsu, goes beyond classical analysis of variance (ANOVA) model to offer a unified theory and advanced techniques for the statistical analysis of experimental data. Dr. Hirotsu introduces the groundbreaking concept of advanced analysis of variance (AANOVA) and explains how the AANOVA approach exceeds the limitations of ANOVA methods to allow for global reasoning utilizing special methods of simultaneous inference leading to individual conclusions. Focusing on normal, binomial, and categorical data, Dr. Hirotsu explores ANOVA theory ...