You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany
This English translation of Karatsuba's Basic Analytic Number Theory follows closely the second Russian edition, published in Moscow in 1983. For the English edition, the author has considerably rewritten Chapter I, and has corrected various typographical and other minor errors throughout the the text. August, 1991 Melvyn B. Nathanson Introduction to the English Edition It gives me great pleasure that Springer-Verlag is publishing an English trans lation of my book. In the Soviet Union, the primary purpose of this monograph was to introduce mathematicians to the basic results and methods of analytic number theory, but the book has also been increasingly used as a textbook by graduate student...
The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I. M. Vinogradov ́s estimates and use them to solve several problems in analytic number theory. They investigate trigonometric integrals, which are often encountered in physics, mathematical statistics, and analysis, and in addition they present purely arithmetic results concerning the solvability of equations in integers.
This book examines the application of complex analysis methods to the theory of prime numbers. In an easy to understand manner, a connection is established between arithmetic problems and those of zero distribution for special functions. Main achievements in this field of mathematics are described. Indicated is a connection between the famous Riemann zeta-function and the structure of the universe, information theory, and quantum mechanics. The theory of Riemann zeta-function and, specifically, distribution of its zeros are presented in a concise and comprehensive way. The full proofs of some modern theorems are given. Significant methods of the analysis are also demonstrated as applied to fundamental problems of number theory.
Beginning with an introduction to cryptography, Hardware Security: Design, Threats, and Safeguards explains the underlying mathematical principles needed to design complex cryptographic algorithms. It then presents efficient cryptographic algorithm implementation methods, along with state-of-the-art research and strategies for the design of very large scale integrated (VLSI) circuits and symmetric cryptosystems, complete with examples of Advanced Encryption Standard (AES) ciphers, asymmetric ciphers, and elliptic curve cryptography (ECC). Gain a Comprehensive Understanding of Hardware Security—from Fundamentals to Practical Applications Since most implementations of standard cryptographic ...
The pillars of the bridge on the cover of this book date from the Roman Empire and they are in daily use today, an example of conventional engineering at its best. Modern commodity operating systems are examples of current system programming at its best, with bugs discovered and fixed on a weekly or monthly basis. This book addresses the question of whether it is possible to construct computer systems that are as stable as Roman designs. The authors successively introduce and explain specifications, constructions and correctness proofs of a simple MIPS processor; a simple compiler for a C dialect; an extension of the compiler handling C with inline assembly, interrupts and devices; and the v...
This book is a collection of papers presented at the International Conference on Intelligent Computing, Information and Control Systems (ICICCS 2021). It encompasses various research works that help to develop and advance the next-generation intelligent computing and control systems. The book integrates the computational intelligence and intelligent control systems to provide a powerful methodology for a wide range of data analytics issues in industries and societal applications. The book also presents the new algorithms and methodologies for promoting advances in common intelligent computing and control methodologies including evolutionary computation, artificial life, virtual infrastructures, fuzzy logic, artificial immune systems, neural networks and various neuro-hybrid methodologies. This book is pragmatic for researchers, academicians and students dealing with mathematically intransigent problems.
An accessible yet rigorous crash course on recursive programming using Python and JavaScript examples. Recursion has an intimidating reputation: it’s considered to be an advanced computer science topic frequently brought up in coding interviews. But there’s nothing magical about recursion. The Recursive Book of Recursion uses Python and JavaScript examples to teach the basics of recursion, exposing the ways that it’s often poorly taught and clarifying the fundamental principles of all recursive algorithms. You’ll learn when to use recursive functions (and, most importantly, when not to use them), how to implement the classic recursive algorithms often brought up in job interviews, an...
This book demonstrates how to formally model various mathematical domains (including algorithms operating in these domains) in a way that makes them amenable to a fully automatic analysis by computer software.The presented domains are typically investigated in discrete mathematics, logic, algebra, and computer science; they are modeled in a formal language based on first-order logic which is sufficiently rich to express the core entities in whose correctness we are interested: mathematical theorems and algorithmic specifications. This formal language is the language of RISCAL, a “mathematical model checker” by which the validity of all formulas and the correctness of all algorithms can be automatically decided. The RISCAL software is freely available; all formal contents presented in the book are given in the form of specification files by which the reader may interact with the software while studying the corresponding book material.
An introduction to number theory for beginning graduate students with articles by the leading experts in the field.