You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Given the importance of linear models in statistical theory and experimental research, a good understanding of their fundamental principles and theory is essential. Supported by a large number of examples, Linear Model Methodology provides a strong foundation in the theory of linear models and explores the latest developments in data analysis.After
A thoroughly updated guide to matrix algebra and it uses in statistical analysis and features SAS®, MATLAB®, and R throughout This Second Edition addresses matrix algebra that is useful in the statistical analysis of data as well as within statistics as a whole. The material is presented in an explanatory style rather than a formal theorem-proof format and is self-contained. Featuring numerous applied illustrations, numerical examples, and exercises, the book has been updated to include the use of SAS, MATLAB, and R for the execution of matrix computations. In addition, André I. Khuri, who has extensive research and teaching experience in the field, joins this new edition as co-author. Th...
Response Surfaces: Designs and Analyses; Second Edition presents techniques for designing experiments that yield adequate and reliable measurements of one or several responses of interest, fitting and testing the suitability of empirical models used for acquiring information from the experiments, and for utilizing the experimental results to make decisions concerning the system under investigation. This edition contains chapters on response surface models with block effects and on Taguchi's robust parameter design, additional details on transformation of response variable, more material on modified ridge analysis, and new design criteria, including rotatability for multiresponse experiments. It also presents an innovative technique for displaying correlation among several response. Numerical examples throughout the book plus exercises--with worked solutions to selected problems--complement the text.
Response Surfaces: Designs and Analyses; Second Edition presents techniques for designing experiments that yield adequate and reliable measurements of one or several responses of interest, fitting and testing the suitability of empirical models used for acquiring information from the experiments, and for utilizing the experimental results to make decisions concerning the system under investigation. This edition contains chapters on response surface models with block effects and on Taguchi's robust parameter design, additional details on transformation of response variable, more material on modified ridge analysis, and new design criteria, including rotatability for multiresponse experiments. It also presents an innovative technique for displaying correlation among several response. Numerical examples throughout the book plus exercises--with worked solutions to selected problems--complement the text.
Presents a novel approach to the statistical design of experiments, offering a simple way to specify and evaluate all possible designs without restrictions to classes of named designs. The work also presents a scientific design method from the recognition stage to implementation and summarization.
Second Edition offers a comprehensive presentation of scientific sampling principles and shows how to design a sample survey and analyze the resulting data. Demonstrates the validity of theorems and statements without resorting to detailed proofs.
This is the first edited volume on response surface methodology (RSM). It contains 17 chapters written by leading experts in the field and covers a wide variety of topics ranging from areas in classical RSM to more recent modeling approaches within the framework of RSM, including the use of generalized linear models. Topics covering particular aspects of robust parameter design, response surface optimization, mixture experiments, and a variety of new graphical approaches in RSM are also included. The main purpose of this volume is to provide an overview of the key ideas that have shaped RSM, and to bring attention to recent research directions and developments in RSM, which can have many useful applications in a variety of fields. The volume will be very helpful to researchers as well as practitioners interested in RSM's theory and potential applications. It will be particularly useful to individuals who have used RSM methods in the past, but have not kept up with its recent developments, both in theory and applications.
Designed to help motivate the learning of advanced calculus by demonstrating its relevance in the field of statistics, this successful text features detailed coverage of optimization techniques and their applications in statistics while introducing the reader to approximation theory. The Second Edition provides substantial new coverage of the material, including three new chapters and a large appendix that contains solutions to almost all of the exercises in the book. Applications of some of these methods in statistics are discusses.
This work describes several statistical techniques for studying repeated measures data, presenting growth curve methods applicable to biomedical, social, animal, agricultural and business research. It details the multivariate development of growth science and repeated measures experiments, covering time-moving covariates, exchangable errors, bioassay results, missing data procedures and nonparametric and Bayesian methods.