You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The concept of frailty offers a convenient way to introduce unobserved heterogeneity and associations into models for survival data. In its simplest form, frailty is an unobserved random proportionality factor that modifies the hazard function of an individual or a group of related individuals. Frailty Models in Survival Analysis presents a comprehensive overview of the fundamental approaches in the area of frailty models. The book extensively explores how univariate frailty models can represent unobserved heterogeneity. It also emphasizes correlated frailty models as extensions of univariate and shared frailty models. The author analyzes similarities and differences between frailty and copu...
In biostatistical research and courses, practitioners and students often lack a thorough understanding of how to apply statistical methods to synthesize biomedical and clinical trial data. Filling this knowledge gap, Applied Meta-Analysis with R shows how to implement statistical meta-analysis methods to real data using R. Drawing on their extensiv
Encyclopedic in breadth, yet practical and concise, Medical Biostatistics, Third Edition focuses on the statistical aspects of medicine with a medical perspective, showing the utility of biostatistics as a tool to manage many medical uncertainties. The author concludes "Just as results of medical tests, statistical results can be false negative or false positive". This edition provides expanded coverage of topics and includes software illustrations. The author presents step-by-step explanations of statistical methods with the help of numerous real-world examples. Guide charts at the beginning of the book enable quick access to the relevant statistical procedure, and the comprehensive index makes it easier to locate terms of interest.
State-of-the-Art Methods for Drug Safety Assessment Responding to the increased scrutiny of drug safety in recent years, Quantitative Evaluation of Safety in Drug Development: Design, Analysis and Reporting explains design, monitoring, analysis, and reporting issues for both clinical trials and observational studies in biopharmaceutical product development. It presents the latest statistical methods for drug safety assessment. The book’s three sections focus on study design, safety monitoring, and data evaluation/analysis. The book addresses key challenges across regulatory agencies, industry, and academia. It discusses quantitative approaches to safety evaluation and risk management in drug development, covering Bayesian methods, effective safety graphics, and risk-benefit evaluation. Written by a team of experienced leaders, this book brings the most advanced knowledge and statistical methods of drug safety to the statistical, clinical, and safety community. It shares best practices and stimulates further research and methodology development in the drug safety area.
Using real data sets throughout, Survival Analysis in Medicine and Genetics introduces the latest methods for analyzing high-dimensional survival data. It provides thorough coverage of recent statistical developments in the medical and genetics fields. The text mainly addresses special concerns of the survival model. After covering the fundamentals, it discusses interval censoring, nonparametric and semiparametric hazard regression, multivariate survival data analysis, the sub-distribution method for competing risks data, the cure rate model, and Bayesian inference methods. The authors then focus on time-dependent diagnostic medicine and high-dimensional genetic data analysis. Many of the methods are illustrated with clinical examples. Emphasizing the applications of survival analysis techniques in genetics, this book presents a statistical framework for burgeoning research in this area and offers a set of established approaches for statistical analysis. It reveals a new way of looking at how predictors are associated with censored survival time and extracts novel statistical genetic methods for censored survival time outcome from the vast amount of research results in genomics.
Theory of Drug Development presents a formal quantitative framework for understanding drug development that goes beyond simply describing the properties of the statistics in individual studies. It examines the drug development process from the perspectives of drug companies and regulatory agencies. By quantifying various ideas underlying drug development, the book shows how to systematically address problems, such as: Sizing a phase 2 trial and choosing the range of p-values that will trigger a follow-up phase 3 trial Deciding whether a drug should receive marketing approval based on its phase 2/3 development program and recent experience with other drugs in the same clinical area Determinin...
Written by a biostatistics expert with over 20 years of experience in the field, Bayesian Methods in Epidemiology presents statistical methods used in epidemiology from a Bayesian viewpoint. It employs the software package WinBUGS to carry out the analyses and offers the code in the text and for download online.The book examines study designs that
In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest, e.g., prostate cancer studies where longitudinal PSA level measurements are collected in conjunction with the time-to-recurrence. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R provides a full treatment of random effects joint models for longitudinal and time-to-event outcomes that can be utilized to analyze such data. The content is primarily explanatory, focusing on applications of joint modeling, but sufficient mathematical details are provided to facilitate understanding of the key features of these models. All illustrations put forward can be implemented in the R programming language via the freely available package JM written by the author. All the R code used in the book is available at: http://jmr.r-forge.r-project.org/
Advancing the development, validation, and use of patient-reported outcome (PRO) measures, Patient-Reported Outcomes: Measurement, Implementation and Interpretation helps readers develop and enrich their understanding of PRO methodology, particularly from a quantitative perspective. Designed for biopharmaceutical researchers and others in the healt
Too often in biostatistical research and clinical trials, a knowledge gap exists between developed statistical methods and the applications of these methods. Filling this gap, Clinical Trial Data Analysis Using R provides a thorough presentation of biostatistical analyses of clinical trial data and shows step by step how to implement the statistical methods using R. The book’s practical, detailed approach draws on the authors’ 30 years of real-world experience in biostatistical research and clinical development. Each chapter presents examples of clinical trials based on the authors’ actual experiences in clinical drug development. Various biostatistical methods for analyzing the data a...