You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book introduces a hot topic of novel and emerging computing paradigms and architectures -computation by travelling waves in reaction-diffusion media. A reaction-diffusion computer is a massively parallel computing device, where the micro-volumes of the chemical medium act as elementary few-bit processors, and chemical species diffuse and react in parallel. In the reaction-diffusion computer both the data and the results of the computation are encoded as concentration profiles of the reagents, or local disturbances of concentrations, whilst the computation per se is performed via the spreading and interaction of waves caused by the local disturbances. The monograph brings together results...
A Physarum machine is a programmable amorphous biological computer experimentally implemented in the vegetative state of true slime mould Physarum polycephalum. It comprises an amorphous yellowish mass with networks of protoplasmic veins, programmed by spatial configurations of attracting and repelling gradients. This book demonstrates how to create experimental Physarum machines for computational geometry and optimization, distributed manipulation and transportation, and general-purpose computation. Being very cheap to make and easy to maintain, the machine also functions on a wide range of substrates and in a broad scope of environmental conditions. As such a Physarum machine is a 'green' and environmentally friendly unconventional computer. The book is readily accessible to a nonprofessional reader, and is a priceless source of experimental tips and inventive theoretical ideas for anyone who is inspired by novel and emerging non-silicon computers and robots. An account on Physarum Machines can be viewed at http: //www.youtube.com/user/PhysarumMachines.
In the late 1960s British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells’ states are updated simultaneously and in discrete time. A dead cell comes to life if it has exactly three live neighbours. A live cell remains alive if two or three of its neighbours are alive, otherwise the cell dies. Conway’s Game of Life became the most programmed solitary game and the most known cellular automaton. The book brings together results of forty years of study into computational, mathematical, physical and engineering aspects of The Game of Life cellular automata. Selected ...
Collision-Based Computing presents a unique overview of computation with mobile self-localized patterns in non-linear media, including computation in optical media, mathematical models of massively parallel computers, and molecular systems. It covers such diverse subjects as conservative computation in billiard ball models and its cellular-automaton analogues, implementation of computing devices in lattice gases, Conway's Game of Life and discrete excitable media, theory of particle machines, computation with solitons, logic of ballistic computing, phenomenology of computation, and self-replicating universal computers. Collision-Based Computing will be of interest to researchers working on relevant topics in Computing Science, Mathematical Physics and Engineering. It will also be useful background reading for postgraduate courses such as Optical Computing, Nature-Inspired Computing, Artificial Intelligence, Smart Engineering Systems, Complex and Adaptive Systems, Parallel Computation, Applied Mathematics and Computational Physics.
Slime mould Physarum polycephalum is a monstrous single cell well known for its task-solving abilities — solves computational geometry and logical problems, navigates robots and generates music.The slime mould could also build motorways, highways and expressways. It is used to analyse transport networks of Africa, Australia, Belgium, Brazil, Canada, China, Germany, Iberia, Italy, Malaysia, Mexico, The Netherlands, UK and USA. The largest cities are represented by oat flakes and the slime mould is inoculated in a capital. When all oat flakes are covered by the slime mould, the structure of the protoplasmic networks formed are analyzed. In the laboratory experiments and theoretical analyses,...
The art works are the outcomes of scientific experiments that aimed to design computing devices made from slime mould. Slime mould Physarum polycephalum is a single-cell organism visible by the unaided eye. The slime mould computes by optimising its shape, electrical activity or location in response to stimulations. This fascinating mix of art and science offers an awe-inspiring look at the ways in which slime mould explores its environment and performs computation. Art works allow us to see the world through the "eyes" of the slime mould and show that the absence of a brain does not exclude an amorphous living creature from intelligence.
This book is devoted to Slime mould Physarum polycephalum, which is a large single cell capable for distributed sensing, concurrent information processing, parallel computation and decentralized actuation. The ease of culturing and experimenting with Physarum makes this slime mould an ideal substrate for real-world implementations of unconventional sensing and computing devices The book is a treatise of theoretical and experimental laboratory studies on sensing and computing properties of slime mould, and on the development of mathematical and logical theories of Physarum behavior. It is shown how to make logical gates and circuits, electronic devices (memristors, diodes, transistors, wires,...
The unconventional computing is a niche for interdisciplinary science, cross-bred of computer science, physics, mathematics, chemistry, electronic engineering, biology, material science and nanotechnology. The aims of this book are to uncover and exploit principles and mechanisms of information processing in and functional properties of physical, chemical and living systems to develop efficient algorithms, design optimal architectures and manufacture working prototypes of future and emergent computing devices. This first volume presents theoretical foundations of the future and emergent computing paradigms and architectures. The topics covered are computability, (non-)universality and comple...
This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata u...
EXPLORING DISCRETE DYNAMICS is a comprehensive guide to studying cellular automata and discrete dynamical networks with the classic software Discrete Dynamics Laboratory (DDLab). These collective networks are at the core of complexity and emergent self-organisation. With interactive graphics, DDLab is able to explore an huge diversity of behaviour -- mostly terra incognita -- space-time patters, but also basins of attraction, mathematical objects representing the convergent flow in state-space. Applications range within physics, mathematics, biology, cognition, society, economics and computation, and more specifically in neural and genetic networks, artificial life, and a theory of memory.