You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents the structure formation and dynamics of animate and inanimate matter on the nanometre scale. This is a new interdisciplinary field known as Meso-Bio-Nano (MBN) science that lies at the intersection of physics, chemistry, biology and material science. Special attention in the book is devoted to investigations of the structure, properties and dynamics of complex MBN systems by means of photonic, electronic, heavy particle and atomic collisions. This includes problems of fusion and fission, fragmentation, surfaces and interfaces, reactivity, nanoscale phase and morphological transitions, irradiation-driven transformations of complex molecular systems, collective electron excitations, radiation damage and biodamage, channeling phenomena and many more. Emphasis in the book is placed on the theoretical and computational physics research advances in these areas and related state-of-the-art experiments. Particular attention in the book is devoted to the utilization of advanced computational techniques and high-performance computing in studies of the dynamics of systems.
This book discusses possibilities and perspectives for designing and practical realization of novel intensive gamma-ray crystal-based light sources that can be constructed through exposure of oriented crystals—linear, bent and periodically bent, to beams of ultrarelativistic positrons and electrons. The book shows case studies like the tunable light sources based on periodically bent crystals that can be designed with the state-of-the-art beam facilities. A special focus is given to the analysis of generation of the gamma rays because the current technologies based on particle motion in the magnetic field become inefficient or incapable to achieve the desired gamma rays’ intensities. It ...
- The first book covering a broad range of physical and chemical problems of atomic cluster physics in the context of physics of atomic and molecular collisions bull; Contains contributions from leading experts in the field bull; Considers both free and supported cluster systems bull; Provides both a general introduction to the field and describes its very recent developments -- ideal for graduate and post-graduate students new to the area as well as specialists in atomic cluster physics bull; Useful for comprehensive lecture courses in quantum mechanics, condensed matter physics and other courses in which complex finite systems like atoic clusters are relevant
This book provides a unique and comprehensive overview of state-of-the-art understanding of the molecular and nano-scale processes that play significant roles in ion-beam cancer therapy. It covers experimental design and methodology, and reviews the theoretical understanding of the processes involved. It offers the reader an opportunity to learn from a coherent approach about the physics, chemistry and biology relevant to ion-beam cancer therapy, a growing field of important medical application worldwide. The book describes phenomena occurring on different time and energy scales relevant to the radiation damage of biological targets and ion-beam cancer therapy from the molecular (nano) scale...
This book introduces and reviews both theory and applications of polarizational bremsstrahlung, i.e. the electromagnetic radiation emitted during collisions of charged particles with structured, thus polarizable targets, such as atoms, molecules and clusters. The subject, following the first experimental evidence a few decades ago, has gained importance through a number of modern applications. Thus, the study of several radiative mechanisms is expected to lead to the design of novel light sources, operating in various parts of the electromagnetic spectrum. Conversely, the analysis of the spectral and angular distribution of the photon emission constitutes a new tool for extracting informatio...
The development of coherent radiation sources for sub-angstrom wavelengths - i.e. in the hard X-ray and gamma-ray range - is a challenging goal of modern physics. The availability of such sources will have many applications in basic science, technology and medicine and in particular, they may have a revolutionary impact on nuclear and solid state physics, as well as on the life sciences. The present state-of-the-art lasers are capable of emitting electromagnetic radiation from the infrared to the ultraviolet, while free electron lasers (X-FELs) are now entering the soft X-ray region. Moving further, i.e. into the hard X and/or gamma ray band, however, is not possible without new approaches a...
This book presents a “snapshot” of the most recent and significant advances in the field of cluster physics. It is a comprehensive review based on contributions by the participants of the 2nd International Symposium on Atomic Cluster Collisions (ISACC 2007) held in July 19-23, 2007 at GSI, Darmstadt, Germany. The purpose of the Symposium is to promote the growth and exhange of scientific information on the structure and properties of nuclear, atomic, molecular, biological and complex cluster systems studied by means of photonic, electronic, heavy particle and atomic collisions. Particular attention is devoted to dynamic phenomena, many-body effects taking place in cluster systems of a different nature — these include problems of fusion and fission, fragmentation, collective electron excitations, phase transitions, etc. Both the experimental and theoretical aspects of cluster physics, uniquely placed between nuclear physics on the one hand and atomic, molecular and solid state physics on the other, are discussed./a
This book introduces readers to MesoBioNano (MBN) Explorer – a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface – the MBN Studio – which enables the set-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science, and guides readers through its applications in numerous areas of research in bio- and chemical p...
Nuclear physics is an exciting, broadly faceted field. It spans a wide range of topics, reaching from nuclear structure physics to high-energy physics, astrophysics and medical physics (heavy ion tumor therapy). New developments are presented in this volume and the status of research is reviewed. A major focus is put on nuclear structure physics, dealing with superheavy elements and with various forms of exotic nuclei: strange nuclei, very neutron rich nuclei, nuclei of antimatter. Also quantum electrodynamics of strong fields is addressed, which is linked to the occurrence of giant nuclear systems in, e.g., U+U collisions. At high energies nuclear physics joins with elementary particle phys...
This book contains 16 chapters. In the first part, there are 8 chapters describing new materials and analytic methods. These materials include chapters on gold nanoparticles and Sol-Gel metal oxides, nanocomposites with carbon nanotubes, methods of evaluation by depth sensing, and other methods. The second part contains 3 chapters featuring new materials with unique properties including optical non-linearities, new materials based on pulp fibers, and the properties of nano-filled polymers. The last part contains 5 chapters with applications of new materials for medical devices, anodes for lithium batteries, electroceramics, phase change materials and matrix active nanoparticles.