You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The papers included here deal with the many faces of renormalization group formalism as it is used in different branches of theoretical physics. The subjects covered emphasize various applications to the theory of turbulence, chaos, quantum chaos in dynamical systems, spin systems and vector models. Also discussed are applications to related topics such as quantum field theory and chromodynamics, high temperature superconductivity and plasma physics.
First Published in 2018. Routledge is an imprint of Taylor & Francis, an Informa company.
By definition, gauge theories - among the cornerstones of fundamental theoretical physics - involve more degrees of freedom than required by the underlying physics. The unphysical degrees of freedom must be shown not to yield unwarranted effects at every step in the formalism where explicit Lorentz covariance is required. The present work presents, in a rigorous way, a consistent formulation for the handling of noncovariant gauges in the quantization and renormalization of gauge theories. Though the path integral method is very convenient for the proof of unitarity and renormalizability of gauge theories, the canonical formalism is eventually necessary to to expose the issues in a self-consistent way. These notes are written as an introduction to postgraduate students, lecturers and researchers in the field and assume prior knowledge of quantum field theory.
This book aims to present the history and developments of particle physics from the introduction of the notion of particles by the Ionian school until the discovery of the Higgs boson at LHC in 2012. Neutrino experiments and particle accelerators where different particles have been discovered are reviewed. In particular, details about the CERN accelerators are presented. This book also discusses the future developments of the field and the work to popularize high energy physics. A short presentation of some features of astrophysics and its connection to particle physics is also included. At the end of the book, some useful tools in the research of particle physics are given for the advanced readers.
The International Conference on the History of Original Ideas and Basic Discoveries, held at the "Ettore Majorana" Centre for Scientific Culture in Erice, Sicily, July 27-August 4, 1994, brought together sixty of the leading scientists including many Nobel Laureates in high energy physics, principal contributors in other fields of physics such as high Tc superconductivity, particle accelerators and detector instrumentation, and thirty-six talented younger physicists selected from candidates throughout the world. The scientific program, including 49 lectures and a discussion session on the "Status and Future Directions in High Energy Physics" was inspired by the conference theme: The key expe...
This book constitutes the proceedings of the X Jorge André Swieca Summer School — Particles and Fields. It includes topics on non-commutative geometry, constructive quantum field theory and duality in quantum field theory, as well as various subjects in high energy physics and phenomenology.
This book contains the invited contributions to the 6th International Conference on Path Integrals from peV to TeV, held in Florence in 1998. The conference, devoted to functional integration, brought together many physicists with interests ranging from elementary particles to nuclear, solid state, liquid state, polymer and complex systems physics. The variety of topics is reflected in the book, which is a unique collection of papers on manifold applications of functional methods in several areas of physics.
If the new boson is indeed the Higgs particle, its discovery represents an important milestone in the history of particle physics. However, despite the pressure to award Nobel Prizes to physicists associated with the Higgs boson, John Moffat argues that there still remain important data analyses to be performed before uncorking the champagne. John Moffat is Professor Emeritus of Physics at the University of Toronto and a senior researcher at the Perimeter Institute for Theoretical Physics. Well-known for his outside-the-box research on topics such as dark matter, dark energy, and the varying speed of light cosmology (VSL), his new book takes a critical look at the hype surrounding the Higgs ...
Publisher Description
This proceedings volume contains selected talks and poster presentations from the 9th International Conference on Path Integrals ? New Trends and Perspectives, which took place at the Max Planck Institute for the Physics of Complex Systems in Dresden, Germany, during the period September 23?28, 2007. Continuing the well-developed tradition of the conference series, the present status of both the different techniques of path integral calculations and their diverse applications to many fields of physics and chemistry is reviewed. This is reflected in the main topics in this volume, which range from more traditional fields such as general quantum physics and quantum or statistical field theory through technical aspects like Monte Carlo simulations to more modern applications in the realm of quantum gravity and astrophysics, condensed matter physics with topical subjects such as Bose?Einstein condensation or quantum wires, biophysics and econophysics. All articles are successfully tied together by the common method of path integration; as a result, special methodological advancements in one topic could be transferred to other topics.