You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents a complete overview of the powerful but often misused technique of Electrochemical Impedance Spectroscopy (EIS). The book presents a systematic and complete overview of EIS. The book carefully describes EIS and its application in studies of electrocatalytic reactions and other electrochemical processes of practical interest. This book is directed towards graduate students and researchers in Electrochemistry. Concepts are illustrated through detailed graphics and numerous examples. The book also includes practice problems. Additional materials and solutions are available online.
Recognized experts present incisive analyses of both fundamental and applied problems in this continuation of a highly acclaimed series. Topics in Number 35 include: Impedance spectroscopy with specific applications to electrode processes involving hydrogen; Fundamentals and contemporary applications of electroless metal deposition; The development of computational electrochemistry and its application to electrochemical kinetics; Analysis of electrolyte solutions at high concentrations; Applications of the Born theory to solvent polarization by ions and its extensions to treatment of kinetics of ionic reactions. £/LIST£
Fifty years ago solution chemistry occupied a major fraction of physical chemistry textbooks, and dealt mainly with classical thermodynamics, phase equilibria, and non-equilibrium phenomena, especially those related to electrochemistry. Much has happened in the intervening period, with tremendous advances in theory and the development of important new experimental techniques. This book brings the reader through the developments from classical macroscopic descriptions to more modern microscopic details.
In this collection of interrelated essays, the authors review landmark developments in electrochemistry building on biographic material and personal insight. The book facilitates understanding of the innate pathways of developments in electrochemical science as a result of lucky circumstances fitting to objective conditions. Thus the book will help to understand the present state of electrochemistry and offer inspiration for solving today’s scientific challenges. The authors as experienced electrochemists from the U.S., Western and Eastern Europe also provide guidance for scientific careers by presenting biographical examples of famous electrochemists.
Corrosion Engineering: Principles and Solved Problems, Second Edition gives a comprehensive overview and introduction to the field through an extensive, theoretical description of the principles of corrosion theory, passivity and corrosion prevention strategies, and design of corrosion protection systems. The second edition has been thoroughly updated with new knowledge and includes solved corrosion case studies, corrosion analysis and solved corrosion problems to help the reader to understand the corrosion fundamental principles from thermodynamics and electrochemical kinetics, the mechanism that triggers the corrosion processes at the metal interface and how to control or inhibit the corro...
This volume is meant as an introductory resource aimed at practitioners of electrochemistry research, technology and development mainly at the atomic, molecular or macromolecular levels. Emphasis is placed at length scales in the 1-100 nm range. The aim of the volume is to help provide understanding of electrochemical phenomena and materials at the nanoscale through modeling and numeric simulations. It is also designed to serve as a means to create and use structures.
A comprehensive review of advances in one of today's most technologically important research fields. Spurred on by society's increasingly urgent demand for an inexpensive, environment-friendly alternative to the internal combustion engine, research into electrocatalytic fuel cells has yielded many exciting advances in the past few years. This rapid rate of progress, however, has created a daunting challenge for anyone attempting to track the important new trends in electrocatalysis by sorting through the huge and rapidly growing body of world literature in the field. Electrocatalysis was designed to save scientists hours of arduous legwork by providing an authoritative review of the most imp...
The past three decades have witnessed the great success of lithium-ion batteries, especially in the areas of 3C products, electrical vehicles, and smart grid applications. However, further optimization of the energy/power density, coulombic efficiency, cycle life, charge speed, and environmental adaptability are still needed. To address these issues, a thorough understanding of the reaction inside a battery or dynamic evolution of each component is required. Microscopy and Microanalysis for Lithium-Ion Batteries discusses advanced analytical techniques that offer the capability of resolving the structure and chemistry at an atomic resolution to further drive lithium-ion battery research and development. • Provides comprehensive techniques that probe the fundamentals of Li-ion batteries. • Covers the basic principles of the techniques involved as well as its application in battery research. • Describes details of experimental setups and procedure for successful experiments. This reference is aimed at researchers, engineers, and scientists studying lithium-ion batteries including chemical, materials, and electrical engineers, as well as chemists and physicists.