You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A rigorous and comprehensive introduction to numerical analysis Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects—design, analysis, or computer implementation—of numerical algorithm...
Mathematics of Computing -- Numerical Analysis.
This expansive volume describes the history of numerical methods proposed for solving linear algebra problems, from antiquity to the present day. The authors focus on methods for linear systems of equations and eigenvalue problems and describe the interplay between numerical methods and the computing tools available at the time. The second part of the book consists of 78 biographies of important contributors to the field. A Journey through the History of Numerical Linear Algebra will be of special interest to applied mathematicians, especially researchers in numerical linear algebra, people involved in scientific computing, and historians of mathematics.
As one of the most popular tools for gathering information in today's marketplace focus groups require understanding of purpose and good grounding in the technique to be effective. In The Handbook for Focus Group Research, Second Edition Tom Greenbaum provides the latest information on conducting effective focus groups.
The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessibl
The most comprehensive and up-to-date discussion available of the Lanczos and CG methods for computing eigenvalues and solving linear systems.
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters. New to the Second Edition Separate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of matrices, generalized inverses, matrices over finite fields, invariant subspaces, representations ...
Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics. The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow develo...
"Contains numerous simple examples and illustrative diagrams....For anyone seeking information about eigenvalue inclusion theorems, this book will be a great reference." --Mathematical Reviews This book studies the original results, and their extensions, of the Russian mathematician S.A. Geršgorin who wrote a seminal paper in 1931 on how to easily obtain estimates of all n eigenvalues (characteristic values) of any given n-by-n complex matrix.