Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Mathematical Study of Degenerate Boundary Layers: A Large Scale Ocean Circulation Problem
  • Language: en
  • Pages: 118

Mathematical Study of Degenerate Boundary Layers: A Large Scale Ocean Circulation Problem

This paper is concerned with a complete asymptotic analysis as $E \to 0$ of the Munk equation $\partial _x\psi -E \Delta ^2 \psi = \tau $ in a domain $\Omega \subset \mathbf R^2$, supplemented with boundary conditions for $\psi $ and $\partial _n \psi $. This equation is a simple model for the circulation of currents in closed basins, the variables $x$ and $y$ being respectively the longitude and the latitude. A crude analysis shows that as $E \to 0$, the weak limit of $\psi $ satisfies the so-called Sverdrup transport equation inside the domain, namely $\partial _x \psi ^0=\tau $, while boundary layers appear in the vicinity of the boundary.

Spinors on Singular Spaces and the Topology of Causal Fermion Systems
  • Language: en
  • Pages: 96

Spinors on Singular Spaces and the Topology of Causal Fermion Systems

Causal fermion systems and Riemannian fermion systems are proposed as a framework for describing non-smooth geometries. In particular, this framework provides a setting for spinors on singular spaces. The underlying topological structures are introduced and analyzed. The connection to the spin condition in differential topology is worked out. The constructions are illustrated by many simple examples such as the Euclidean plane, the two-dimensional Minkowski space, a conical singularity, a lattice system as well as the curvature singularity of the Schwarzschild space-time. As further examples, it is shown how complex and Kähler structures can be encoded in Riemannian fermion systems.

CR Embedded Submanifolds of CR Manifolds
  • Language: en
  • Pages: 94

CR Embedded Submanifolds of CR Manifolds

The authors develop a complete local theory for CR embedded submanifolds of CR manifolds in a way which parallels the Ricci calculus for Riemannian submanifold theory. They define a normal tractor bundle in the ambient standard tractor bundle along the submanifold and show that the orthogonal complement of this bundle is not canonically isomorphic to the standard tractor bundle of the submanifold. By determining the subtle relationship between submanifold and ambient CR density bundles the authors are able to invariantly relate these two tractor bundles, and hence to invariantly relate the normal Cartan connections of the submanifold and ambient manifold by a tractor analogue of the Gauss fo...

Extended States for the Schrödinger Operator with Quasi-Periodic Potential in Dimension Two
  • Language: en
  • Pages: 152

Extended States for the Schrödinger Operator with Quasi-Periodic Potential in Dimension Two

The authors consider a Schrödinger operator H=−Δ+V(x⃗ ) in dimension two with a quasi-periodic potential V(x⃗ ). They prove that the absolutely continuous spectrum of H contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves ei⟨ϰ⃗ ,x⃗ ⟩ in the high energy region. Second, the isoenergetic curves in the space of momenta ϰ⃗ corresponding to these eigenfunctions have the form of slightly distorted circles with holes (Cantor type structure). A new method of multiscale analysis in the momentum space is developed to prove these results. The result is based on a previous paper on the quasiperiodic polyharmonic operator (−Δ)l+V(x⃗ ), l>1. Here the authors address technical complications arising in the case l=1. However, this text is self-contained and can be read without familiarity with the previous paper.

On Space-Time Quasiconcave Solutions of the Heat Equation
  • Language: en
  • Pages: 94

On Space-Time Quasiconcave Solutions of the Heat Equation

In this paper the authors first obtain a constant rank theorem for the second fundamental form of the space-time level sets of a space-time quasiconcave solution of the heat equation. Utilizing this constant rank theorem, they obtain some strictly convexity results of the spatial and space-time level sets of the space-time quasiconcave solution of the heat equation in a convex ring. To explain their ideas and for completeness, the authors also review the constant rank theorem technique for the space-time Hessian of space-time convex solution of heat equation and for the second fundamental form of the convex level sets for harmonic function.

Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized Bidisc
  • Language: en
  • Pages: 122

Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized Bidisc

A set V in a domain U in Cn has the norm-preserving extension property if every bounded holomorphic function on V has a holomorphic extension to U with the same supremum norm. We prove that an algebraic subset of the symmetrized bidisc

Continuous-Time Random Walks for the Numerical Solution of Stochastic Differential Equations
  • Language: en
  • Pages: 136

Continuous-Time Random Walks for the Numerical Solution of Stochastic Differential Equations

This paper introduces time-continuous numerical schemes to simulate stochastic differential equations (SDEs) arising in mathematical finance, population dynamics, chemical kinetics, epidemiology, biophysics, and polymeric fluids. These schemes are obtained by spatially discretizing the Kolmogorov equation associated with the SDE in such a way that the resulting semi-discrete equation generates a Markov jump process that can be realized exactly using a Monte Carlo method. In this construction the jump size of the approximation can be bounded uniformly in space, which often guarantees that the schemes are numerically stable for both finite and long time simulation of SDEs.

A Morse-Bott Approach to Monopole Floer Homology and the Triangulation Conjecture
  • Language: en
  • Pages: 174

A Morse-Bott Approach to Monopole Floer Homology and the Triangulation Conjecture

In the present work the author generalizes the construction of monopole Floer homology due to Kronheimer and Mrowka to the case of a gradient flow with Morse-Bott singularities. Focusing then on the special case of a three-manifold equipped equipped with a structure which is isomorphic to its conjugate, the author defines the counterpart in this context of Manolescu's recent Pin(2)-equivariant Seiberg-Witten-Floer homology. In particular, the author provides an alternative approach to his disproof of the celebrated Triangulation conjecture.

Distribution of Resonances in Scattering by Thin Barriers
  • Language: en
  • Pages: 168

Distribution of Resonances in Scattering by Thin Barriers

The author studies high energy resonances for the operators where is strictly convex with smooth boundary, may depend on frequency, and is the surface measure on .

Measure and Capacity of Wandering Domains in Gevrey Near-Integrable Exact Symplectic Systems
  • Language: en
  • Pages: 122

Measure and Capacity of Wandering Domains in Gevrey Near-Integrable Exact Symplectic Systems

A wandering domain for a diffeomorphism of is an open connected set such that for all . The authors endow with its usual exact symplectic structure. An integrable diffeomorphism, i.e., the time-one map of a Hamiltonian which depends only on the action variables, has no nonempty wandering domains. The aim of this paper is to estimate the size (measure and Gromov capacity) of wandering domains in the case of an exact symplectic perturbation of , in the analytic or Gevrey category. Upper estimates are related to Nekhoroshev theory; lower estimates are related to examples of Arnold diffusion. This is a contribution to the “quantitative Hamiltonian perturbation theory” initiated in previous works on the optimality of long term stability estimates and diffusion times; the emphasis here is on discrete systems because this is the natural setting to study wandering domains.