You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This two-volume set, LNCS 12565 and 12566, constitutes the refereed proceedings of the 6th International Conference on Machine Learning, Optimization, and Data Science, LOD 2020, held in Siena, Italy, in July 2020. The total of 116 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 209 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.
None
None
To reveal the inner workings of Al Qaeda, this book collects and annotates key texts of the major figures from whom the movement has drawn its beliefs and direction. There are excerpts from the writings of Azzabdallah Azzam, Ayman al-Zawahiri, Osama Bin Laden and Abu Musab al-Zarqawi.
Corporate success has been changed by the importance of new developments in Business Analytics (BA) and furthermore by the support of computational intelligence- based techniques. This book opens a new avenues in these subjects, identifies key developments and opportunities. The book will be of interest for students, researchers and professionals to identify innovative ways delivered by Business Analytics based on computational intelligence solutions. They help elicit information, handle knowledge and support decision-making for more informed and reliable decisions even under high uncertainty environments.Computational Intelligence for Business Analytics has collected the latest technological innovations in the field of BA to improve business models related to Group Decision-Making, Forecasting, Risk Management, Knowledge Discovery, Data Breach Detection, Social Well-Being, among other key topics related to this field.
To select the most suitable simulation algorithm for a given task is often difficult. This is due to intricate interactions between model features, implementation details, and runtime environment, which may strongly affect the overall performance. An automated selection of simulation algorithms supports users in setting up simulation experiments without demanding expert knowledge on simulation. Roland Ewald analyzes and discusses existing approaches to solve the algorithm selection problem in the context of simulation. He introduces a framework for automatic simulation algorithm selection and describes its integration into the open-source modelling and simulation framework James II. Its selection mechanisms are able to cope with three situations: no prior knowledge is available, the impact of problem features on simulator performance is unknown, and a relationship between problem features and algorithm performance can be established empirically. The author concludes with an experimental evaluation of the developed methods.
Global optimization is concerned with finding the global extremum (maximum or minimum) of a mathematically defined function (the objective function) in some region of interest. In many practical problems it is not known whether the objective function is unimodal in this region; in many cases it has proved to be multimodal. Unsophisticated use of local optimization techniques is normally inefficient for solving such problems. Therefore, more sophisticated methods designed for global optimization, i.e. global optimization methods, are important from a practical point of view. Most methods discussed here assume that the extremum is attained in the interior of the region of interest, i.e., that ...