You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Computer Engineering in Applied Electromagnetism contains papers which were presented at the International Symposium on Electromagnetic Fields in Electrical Engineering, held in Maribor, Slovenia, 18-20 September 2003. It consists of three parts, Computational Techniques, Electromagnetic Engineering, and Special Applications. The contributions selected for the book cover a wide spectrum of theory and practice, being simultaneously of high theoretical level and deeply rooted in engineering problems. Thus, this volume touches on what is of key importance in electromagnetism.
The energy sector is undergoing unprecedented change. Twenty years ago, the main concern was having enough oil and gas, whereas today, political leaders are faced with the need to reduce the CO2 emissions produced by still-dominant fossil fuels, without being able to totally rely on renewable energies, which are intermittent and whose share in energy production remains low. Geopolitics and Energy Transition 1 presents the technical aspects of energy and its main characteristics, and outlines the challenges of the energy transition, the conditions for the development of renewable energies and the geopolitical stakes of this transition. It also describes the various energy markets and the consequences of liberalization policies, not forgetting to analyze the structures of the different sectors, while pointing out the fundamental problems of supply security and ways of strengthening it.
Wind energy conversion systems are subject to many different types of faults and therefore fault detection is highly important to ensure reliability and safety. Monitoring systems can help to detect faults before they result in downtime. This book presents efficient methods used to detect electrical and mechanical faults based on electrical signals occurring in the different components of a wind energy conversion system. For example, in a small and high power synchronous generator and multi-phase generator, in the diode bridge rectifier, the gearbox and the sensors. This book also presents a method for keeping the frequency and voltage of the power grid within an allowable range while ensuring the continuity of power supply in the event of a grid fault. Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems presents original results obtained from a variety of research. It will not only be useful as a guideline for the conception of more robust wind turbines systems, but also for engineers monitoring wind turbines and researchers
The energy sector is undergoing unprecedented change. Twenty years ago, the main concern was having enough oil and gas, whereas today, political leaders are faced with the need to reduce the CO2 emissions produced by still-dominant fossil fuels, without being able to totally rely on renewable energies, which are intermittent and whose share in energy production remains low. Geopolitics and Energy Transition 2 examines the energy sector and the state of energy transition continent by continent. North America is rich in resources, while the situation is mixed in South America. Europe advocates transition but remains dependent on imported fossil fuels. The CIS has enormous resources at its disposal and uses them as political weapons. Access to energy is a priority for Africa. Asia is faced with growing energy needs and pollution, which should accelerate energy transition. The Middle East, a champion of hydrocarbons, is launching into solar energy.
Distribution systems drive energy and societal transition. System planning enables investments to be made in the right place, at the right time and with the right technology. Distribution System Planning is centered on the evolution of planning methods that will best support this transition, and describes the historical context and concepts that enable planning, its challenges and key influencing factors to be grasped. It also analyzes the impact of the development of renewable and decentralized energy resources, government recommendations and distributor initiatives to promote their integration. Through the use of case studies, this book provides examples of how planning methodologies have evolved, as well as an overview of new and emerging solutions.
Methods of diagnosis and prognosis play a key role in the reliability and safety of industrial systems. Failure diagnosis requires the use of suitable sensors, which provide signals that are processed to monitor features (health indicators) for defects. These features are required to distinguish between operating states, in order to inform the operator of the severity level, or even the type, of a failure. Prognosis is defined as the estimation of a systems lifespan, including how long remains and how long has passed. It also encompasses the prediction of impending failures. This is a challenge that many researchers are currently trying to address. Electrical Systems, a book in two volumes, informs readers of the theoretical solutions to this problem, and the results obtained in several laboratories in France, Spain and further afield. To this end, many researchers from the scientific community have contributed to this book to share their research results.
Smart power integration is at the crossroads of different fields of electronics such as high and low power, engine control and electrothermal studies of devices and circuits. These circuits are complex and are heavily influenced by substrate coupling, especially where 3D integration is concerned. This book provides an overview of smart power integration, including high voltage devices, dedicated and compatible processes, as well as isolation techniques. Two types of integration are highlighted: modular or hybrid integration, together with compatible devices such as the insulated gate bipolar transistor (IGBT); and monolithic integration, specifically through the paradigm of functional integration. Smart Power Integration outlines the main MOS devices for high voltage integrated circuits, and explores into the fields of codesign, coupling hardware and software design, including applications to motor control. Studies focusing on heat pipes for electronics cooling are also outlined.
Climate change and the loss of biodiversity are now realities. Their causes and origins stem from the energy, goods and resources relied upon by the lifestyle of a growing part of humanity. Smart Users for Energy and Societal Transition presents this much needed transition, as well as the scenarios and paths essential to mitigating the impacts of climate change. It deals with transitions experimented in the form of ecosystems in universities, cities and territories, as well as with concepts of smart buildings, smart grids and smart cities, addressed to smart users – or not – in an interdisciplinary research context. Sociological issues related to the role of smart building users are discussed, ranging from acceptance to the appropriation of the technologies made available to them. The book highlights the ethics of this essential transition and the importance of individual behaviors in safeguarding humanity on a preserved planet.
Energy autonomy is an emerging concept that is, as yet, poorly identified in France. It can mean taking ownership of certain issues related to energy, its production, or, indeed, becoming self-sufficient, and it can apply equally to individuals, communities and buildings. While there are numerous new developments – renewable energies, smart grids and self-consumption – it is becoming difficult to know what this idea of “autonomy” covers, just as it is difficult to define “independence” and “self-sufficiency”, which are often associated with it. However, these three concepts are key to thinking about the energy system and deciding its future. Covering distinct ideas, they are ...