You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents the proceedings of Positivity VII, held from 22-26 July 2013, in Leiden, the Netherlands. Positivity is the mathematical field concerned with ordered structures and their applications in the broadest sense of the word. A biyearly series of conferences is devoted to presenting the latest developments in this lively and growing discipline. The lectures at the conference covered a broad spectrum of topics, ranging from order-theoretic approaches to stochastic processes, positive solutions of evolution equations and positive operators on vector lattices, to order structures in the context of algebras of operators on Hilbert spaces. The contributions in the book reflect this variety and appeal to university researchers in functional analysis, operator theory, measure and integration theory and operator algebras. Positivity VII was also the Zaanen Centennial Conference to mark the 100th birth year of Adriaan Cornelis Zaanen, who held the chair of Analysis in Leiden for more than 25 years and was one of the leaders in the field during his lifetime.
This book presents nine survey articles addressing topics surrounding positivity, with an emphasis on functional analysis. The book assembles a wide spectrum of research into positivity, providing up-to-date information on topics of current interest. The discussion provides insight into classical areas like spaces of continuous functions, f-algebras, and integral operators. The coverage extends is broad, including vector measures, operator spaces, ordered tensor products, and non-commutative Banach function spaces.
This volume is dedicated to A.C. Zaanen, one of the pioneers of functional analysis, and eminent expert in modern integration theory and the theory of vector lattices, on the occasion of his 80th birthday. The book opens with biographical notes, including Zaanen's curriculum vitae and list of publications. It contains a selection of original research papers which cover a broad spectrum of topics about operators and semigroups of operators on Banach lattices, analysis in function spaces and integration theory. Special attention is paid to the spectral theory of operators on Banach lattices; in particular, to the one of positive operators. Classes of integral operators arising in systems theory, optimization and best approximation problems, and evolution equations are also discussed. The book will appeal to a wide range of readers engaged in pure and applied mathematics.
Complex Proofs of Real Theorems is an extended meditation on Hadamard's famous dictum, ``The shortest and best way between two truths of the real domain often passes through the imaginary one.'' Directed at an audience acquainted with analysis at the first year graduate level, it aims at illustrating how complex variables can be used to provide quick and efficient proofs of a wide variety of important results in such areas of analysis as approximation theory, operator theory, harmonic analysis, and complex dynamics. Topics discussed include weighted approximation on the line, Muntz's theorem, Toeplitz operators, Beurling's theorem on the invariant spaces of the shift operator, prediction the...
The purpose of this monograph is to provide a systematic account of the theory of noncommutative integration in semi-finite von Neumann algebras. It is designed to serve as an introductory graduate level text as well as a basic reference for more established mathematicians with interests in the continually expanding areas of noncommutative analysis and probability. Its origins lie in two apparently distinct areas of mathematical analysis: the theory of operator ideals going back to von Neumann and Schatten and the general theory of rearrangement invariant Banach lattices of measurable functions which has its roots in many areas of classical analysis related to the well-known Lp-spaces. A principal aim, therefore, is to present a general theory which contains each of these motivating areas as special cases.
During the last twenty-five years, the development of the theory of Banach lattices has stimulated new directions of research in the theory of positive operators and the theory of semigroups of positive operators. In particular, the recent investigations in the structure of the lattice ordered (Banach) algebra of the order bounded operators of a Banach lattice have led to many important results in the spectral theory of positive operators. The contributions contained in this volume were presented as lectures at a conference organized by the Caribbean Mathematics Foundation, and provide an overview of the present state of development of various areas of the theory of positive operators and their spectral properties. This book will be of interest to analysts whose work involves positive matrices and positive operators.
This conference proceeding contains 27 peer-reviewed invited papers from leading experts as well as young researchers all over the world in the related fields that Professor Fukushima has made important contributions to. These 27 papers cover a wide range of topics in probability theory, ranging from Dirichlet form theory, Markov processes, heat kernel estimates, entropy on Wiener spaces, analysis on fractal spaces, random spanning tree and Poissonian loop ensemble, random Riemannian geometry, SLE, space-time partial differential equations of higher order, infinite particle systems, Dyson model, functional inequalities, branching process, to machine learning and Hermitizable problems for complex matrices. Researchers and graduate students interested in these areas will find this book appealing.
This volume contains a selection of articles on the theme "vector measures, integration and applications" together with some related topics. The articles consist of both survey style and original research papers, are written by experts in thearea and present a succinct account of recent and up-to-date knowledge. The topic is interdisciplinary by nature and involves areas such as measure and integration (scalar, vector and operator-valued), classical and harmonic analysis, operator theory, non-commutative integration, andfunctional analysis. The material is of interest to experts, young researchers and postgraduate students.