You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
DNA stores and passes the genetic information of almost all living organisms. Its molecular structure and their intramolecular interactions are particularly suitable to maximize stability against oxidative stress and UV-light absorption. Yet the protection and repair strategies are still error-prone: DNA lesions are produced, including the most complex and highly mutagenic ones. An important threat to DNA stability comes from photosensitization, i.e. from the dramatic multiplication of radiation-induced defects mediated by the presence of organic or organometallic dyes compared to the direct exposure to UVA radiation. Moreover, the photo-induced production of singlet oxygen generates an extr...
This book focuses on the current status of our understanding of RNA, a key biological molecule. The various RNAs covered are messenger RNA, ribosomal RNA, transfer RNA, noncoding RNAs, modified nucleosides, and RNA enzymes. The different chapters detail methods to investigate RNA structure and function, the chemistry of modified RNAs, and the latest advances in our understanding of the vast array of biological processes in which RNA is involved. RNA, in one form or another, touches almost everything in a cell. RNA has both structural and catalytic properties. RNA fulfills a broad range of functions. These molecules are no longer seen as passive elements transferring the genetic information f...
The proposed volume provides both fundamental and detailed information about the computational and computational-experimental studies which improve our knowledge of how leaving matter functions, the different properties of drugs (including the calculation and the design of new ones), and the creation of completely new ways of treating numerical diseases. Whenever it is possible, the interplay between theory and experiment is provided. The book features computational techniques such as quantum-chemical and molecular dynamic approaches and quantitative structure–activity relationships. The initial chapters describe the state-of-the art research on the computational investigations in molecular biology, molecular pharmacy, and molecular medicine performed with the use of pure quantum-chemical techniques. The central part of the book illustrates the status of computational techniques that utilize hybrid, so called QM/MM approximations as well as the results of the QSAR studies which now are the most popular in predicting drugs’ efficiency. The last chapters describe combined computational and experimental investigations.
This multi-author contributed volume includes methodological advances and original applications to actual chemical or biochemical phenomena which were not possible before the increased sophistication of modern computers. The chapters contain detailed reviews of the developments of various computational techniques, used to study complex molecular systems such as molecular liquids and solutions (particularly aqueous solutions), liquid-gas, solid-gas interphase and biomacromolecular systems. Quantum modeling of complex molecular systems is a useful resource for graduate students and fledgling researchers and is also an excellent companion for research professionals engaged in computational chemistry, material science, nanotechnology, physics, drug design, and molecular biochemistry.
The five-volume set LNCS 7971-7975 constitutes the refereed proceedings of the 13th International Conference on Computational Science and Its Applications, ICCSA 2013, held in Ho Chi Minh City, Vietnam, in June 2013. Apart from the general track, ICCSA 2013 also include 33 special sessions and workshops, in various areas of computational sciences, ranging from computational science technologies, to specific areas of computational sciences, such as computer graphics and virtual reality. There are 46 papers from the general track, and 202 in special sessions and workshops.
Excitons, as part of the InTech collection of international works on optics and optoelectronics, contains recent achievements of specialists from China, France, Japan, Switzerland, and Moldova jointly with Russia and the United States of America on properties and application of excitons in electronics. The growing number of countries participating in this endeavor and joint participation of the US, Moldova, Italy, and Russian scientists in investigations of excitons in the edition of this book testify to the unifying effect of science. An interested reader will find in the book the description of properties and possible applications of excitons, as well as the methods of fabrication and analysis of operation and the regions of application of modern excitonic devices.
The Stone Age, the Bronze Age, the Iron Age... Every global epoch in the history of the mankind is characterized by materials used in it. In 2004 a new era in material science was opened: the era of graphene or, more generally, of two-dimensional materials. Graphene is the strongest and the most stretchable known material, it has the record thermal conductivity and the very high mobility of charge carriers. It demonstrates many interesting fundamental physical effects and promises a lot of applications, among which are conductive ink, terahertz transistors, ultrafast photodetectors and bendable touch screens. In 2010 Andre Geim and Konstantin Novoselov were awarded the Nobel Prize in Physics "for groundbreaking experiments regarding the two-dimensional material graphene". The two volumes Physics and Applications of Graphene - Experiments and Physics and Applications of Graphene - Theory contain a collection of research articles reporting on different aspects of experimental and theoretical studies of this new material.
Padre Pio died September 23, 1968, his funeral attended by over 100,000 people. During the fifty-eight years he was a priest, his monastery at San Giovanni Rotondo, Italy, became a mecca for pilgrims from all over the world. Born Francesco Forgione on May 25, 1887 at Pietrelcina in southeastern Italy, Padre Pio joined the Capuchin Order in 1903 and was ordained in 1910. On September 20, 1918 he received the sacred wounds of Christ, or the stigmata, which he bore the rest of his life.
The QM/MM method, short for quantum mechanical/molecular mechanical, is a highly versatile approach for the study of chemical phenomena, combining the accuracy of quantum chemistry to describe the region of interest with the efficiency of molecular mechanical potentials to represent the remaining part of the system. Originally conceived in the 1970s by the influential work of the the Nobel laureates Martin Karplus, Michael Levitt and Arieh Warshel, QM/MM techniques have evolved into one of the most accurate and general approaches to investigate the properties of chemical systems via computational methods. Whereas the first applications have been focused on studies of organic and biomolecular...