You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Stanford University hosted the XIX International Symposium on Lepton and Photon Interactions at High Energies on August 9 - 14, 1999, at the Law School on the Stanford University Campus, the site of the previous Symposia. This volume constitutes the proceedings of the Symposium.
The 28th conference from the Rochester series was the major high energy physics conference in 1996. Volume one contains short reports on new theoretical and experimental results. Volume two consists of the review talks presented in the plenary sessions.
Stanford University hosted the XIX International Symposium on Lepton and Photon Interactions at High Energies on August 9 - 14, 1999, at the Law School on the Stanford University Campus, the site of the previous Symposia. This volume constitutes the proceedings of the Symposium.
This volume contains the contributions of 47 leading researchers in high energy physics, both theorists and experimentalists, from all over the world. It discusses the application of quantum field theory to phenomenology in all areas of active research in particle physics. The topics covered include: (i) the status of precision measurements at LEP, SLC, HERA, Tevatron, and other experiments; (ii) quantum-field-theoretical techniques for calculating electroweak and QCD radiative corrections; and (iii) radiative corrections and precision experiments in future colliders (Tevatron II, LHC, NLC, Muon Collider, etc.). The confrontation in a single volume of all the high precision results reported by experimentalists, on one side, with the predictions of the Standard Model (SM) at the level of radiative corrections, on the otherside, provides a detailed test of the SM at the quantum level. And, where discrepancies appear, it gives hints of physics beyond the SM (such as supersymmetry, effective quantum field theories, etc.) which are thoroughly discussed in the book.
The topic of the CVIII session of Les Houches School, held in July 2017, was Effective Field Theory (EFT). The goal of this school was to offer a broad introduction to the foundations and modern applications of Effective Field Theory in many of its incarnations.
This book provides an overview of many of the dramatic recent developments in the fields of astronomy, cosmology and fundamental physics. Topics include observations of the structure in the cosmic background radiation, evidence for an accelerating Universe, the extraordinary concordance in the fundamental parameters of the Universe coming from these and other diverse observations, the search for dark matter candidates, evidence for neutrino oscillations, space experiments on fundamental physics, and discoveries of extrasolar planets. This book will be useful for researchers and graduate students who wish to have a broad overview of the current developments in these fields.
The QNP series of international conferences on Quarks and Nuclear Physics is by now a well established and highly respected forum where the most recent developments in the field are discussed and communicated. QNP 2006 is the forth edition of this biennial meeting. Selected and refereed original contributions of QNP 2006 have been published in The European Physical Journal A - Hadrons and Nuclei (EPJ A), while the present proceedings book, in addition to reprinting the articles published in EPJ A, further includes all other contributions selected and accepted by the organizing committee for publication and archiving.
The generalization of QCD from three to C colors, developed in 1974 by Nobel laureate Gerard 't Hooft, has proved to be an extraordinarily useful and robust theoretical extension for studying the behavior of strong interaction physics. This book is the proceedings of the first-ever meeting exclusively devoted to large NC QCD. The workshop brought together representatives of many subdisciplines for a meeting of minds on topics ranging from finite temperature and density to the lattice, perturbative QCD, instantons, mesons, baryons, and nuclear physics. Beginning with 't Hooft's keynote presentation, the contributions are designed to introduce uses of large NC methods in each specialty to a broader particle physics audience."
Although the various branches of physics differ in their experimental methods and theoretical approaches, certain general principles apply to all of them. The forefront of contemporary advances in physics lies in the submicroscopic regime, whether it be in atomic, nuclear, condensed-matter, plasma, or particle physics, or in quantum optics, or even in the study of stellar structure. All are based upon quantum theory (i.e: quantum mechanics and quantum field theory) and relativity, which together form the theoretical foundations of modern physics. Many physical quantities whose classical counterparts vary continuously over a range of possible values are in quantum theory constrained to have d...
None